无线传感器网络动态加权DV-Distance算法  被引量:12

Dynamic weighted DV-Distance algorithm for wireless sensor networks

在线阅读下载全文

作  者:石欣[1] 冉启可[1] 范敏[1] 于海存[1] 王玲[1] 

机构地区:[1]重庆大学自动化学院,重庆400030

出  处:《仪器仪表学报》2013年第9期1975-1981,共7页Chinese Journal of Scientific Instrument

基  金:国家科技重大专项(2011BAJ03B13);重庆市科技攻关项目(CSCT;2010AA2036)资助

摘  要:无线传感器网络DV-Distance定位算法,采用未知节点与锚节点间的累计跳段距离代替欧式距离计算节点位置,存在较大的定位误差。针对这一问题,提出一种动态加权DV-Distance改进定位算法,基于未知节点的修正模式,保证定位网络中每个未知节点具有不同的修正系数;通过动态加权修正模型,用锚节点间距离、跳数等信息计算修正系数,采用动态加权的方法将不同方向上的修正系数进行整合,修正未知节点与锚节点间累计跳段距离,提高算法的定位精度。通过仿真验证了算法具有更高的定位精度;并进一步通过实验验证了算法的有效性和可行性。In wireless sensor networks, DV-Distance localization algorithm uses the accumulated hop distance between the unknown node and anchor node to replace the Euclidean distance for calculating the node location, which leads to big location error. To solve this problem, a dynamic weighted DV-Distance improved localization algorithm is proposed in this paper. This algorithm uses the correction mode on the basis of unknown node to ensure that each unknown node in the localization network has different correction factors. Also, in order to improve the location accuracy, a dy- namic weighted correction model is introduced to correct the accumulated hop distance between the unknown node and anchor node. The dynamic weighted correction model makes use of the distance, hops and other information be- tween the anchor nodes to calculate the correction factors, and integrates the correction factors in different directions with the method of dynamic weighted ; therefore the localization accuracy of the algorithm is improved. The simulation results show that the algorithm performs better in terms of location accuracy. Furthermore, the experiments verify the effectiveness and feasibility of the algorithm in practical systems.

关 键 词:无线传感器网络 DV—Distance定位算法 动态加权 修正模式 修正模型 

分 类 号:TP393[自动化与计算机技术—计算机应用技术]

 

参考文献:

正在载入数据...

 

二级参考文献:

正在载入数据...

 

耦合文献:

正在载入数据...

 

引证文献:

正在载入数据...

 

二级引证文献:

正在载入数据...

 

同被引文献:

正在载入数据...

 

相关期刊文献:

正在载入数据...

相关的主题
相关的作者对象
相关的机构对象