NORMALLY DISTRIBUTED PROBABILITY MEASURE ON THE METRIC SPACE OF NORMS  

NORMALLY DISTRIBUTED PROBABILITY MEASURE ON THE METRIC SPACE OF NORMS

在线阅读下载全文

作  者:Á.G.HORVÁTH 

机构地区:[1]Department of Geometry, Mathematical Institute, Budapest University of Technology and Economics

出  处:《Acta Mathematica Scientia》2013年第5期1231-1242,共12页数学物理学报(B辑英文版)

摘  要:In this paper we propose a method to construct probability measures on the space of convex bodies. For this purpose, first, we introduce the notion of thinness of a body. Then we show the existence of a measure with the property that its pushforward by the thinness function is a probability measure of truncated normal distribution. Finally, we improve this method to find a measure satisfying some important properties in geometric measure theory.In this paper we propose a method to construct probability measures on the space of convex bodies. For this purpose, first, we introduce the notion of thinness of a body. Then we show the existence of a measure with the property that its pushforward by the thinness function is a probability measure of truncated normal distribution. Finally, we improve this method to find a measure satisfying some important properties in geometric measure theory.

关 键 词:Hausdorff metric BOREL DIRAC Haar and Lebesgue-measure space of convex bodies metric space of norms 

分 类 号:O211.3[理学—概率论与数理统计] O189.11[理学—数学]

 

参考文献:

正在载入数据...

 

二级参考文献:

正在载入数据...

 

耦合文献:

正在载入数据...

 

引证文献:

正在载入数据...

 

二级引证文献:

正在载入数据...

 

同被引文献:

正在载入数据...

 

相关期刊文献:

正在载入数据...

相关的主题
相关的作者对象
相关的机构对象