检索规则说明:AND代表“并且”;OR代表“或者”;NOT代表“不包含”;(注意必须大写,运算符两边需空一格)
检 索 范 例 :范例一: (K=图书馆学 OR K=情报学) AND A=范并思 范例二:J=计算机应用与软件 AND (U=C++ OR U=Basic) NOT M=Visual
机构地区:[1]天津大学数学系,天津300072 [2]南京航空航天大学空气动力学系,南京210016
出 处:《南京航空航天大学学报》2000年第6期672-676,共5页Journal of Nanjing University of Aeronautics & Astronautics
基 金:国家自然科学基金(编号:79500012)资助项目
摘 要:通过将有限矩形上的广义 2 - D Roesser模型转化为等价的代数方程 ,给出了有限矩形上所有输入均为该系统的可接受输入的充要条件 ;利用 2 - D Z-变换以及多项式矩阵的性质 ,给出了无限矩形上所有输入均可接受的充要条件。证明了当系统的输入矩阵行满秩时 ,只要系统在某个有限矩形上的所有输入均为可接受输入 ,则在无限矩形上的所有输入也均为可接受输入。基于矩阵的初等行变换 ,提出了确定广义 2 - D系统 Roesser模型可接受输入序列集合的方法。Two dimensional (2 D) systems are utilized in various practical areas such as image processing, digital data filtering, etc. The singular Roesser model (SRM) is one of the most popular state space models of 2 D linear discrete systems. The SRM may not have a solution for all input sequences. This paper focuses on the acceptable input sequences of the SRM. After transforming the SRM on a finite rectangle into an equivalent algebra equation, sufficient and necessary conditions for all input sequences on the finite rectangle being acceptable for the system are given. By taking 2 D Z transform of the system and using the property of polynomial matrices, sufficient and necessary conditions for all input sequences on the infinite rectangle being acceptable are established. It is shown that all input sequences on some finite rectangle being acceptable for the SRM implies all input sequences on the infinite rectangle being acceptable when the input matrix of the system has full row rank. Based on elementary row operations on matrices, a method for determining the set of acceptable input sequence is proposed. An illustrative example is included.
关 键 词:状态空间 离散系统 控制问题 2-DRoesser模型 2-DZ-变换
分 类 号:O231.1[理学—运筹学与控制论] TP13[理学—数学]
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在链接到云南高校图书馆文献保障联盟下载...
云南高校图书馆联盟文献共享服务平台 版权所有©
您的IP:216.73.216.200