检索规则说明:AND代表“并且”;OR代表“或者”;NOT代表“不包含”;(注意必须大写,运算符两边需空一格)
检 索 范 例 :范例一: (K=图书馆学 OR K=情报学) AND A=范并思 范例二:J=计算机应用与软件 AND (U=C++ OR U=Basic) NOT M=Visual
机构地区:[1]山东大学信息科学与工程学院,济南250100
出 处:《系统仿真学报》2013年第10期2475-2480,共6页Journal of System Simulation
摘 要:传统FDTD受到Courant稳定性条件限制,计算时间较长,而ADI-FDTD精度又比较低,Crank-Nicolson时域有限差分方法(CN-FDTD)在时间步长上的取值远大于CFL条件时仍旧能够保持良好的计算精度。采用无条件稳定的柱坐标系Crank-Nicolson时域有限差分方法(CN-FDTD)分析了轴对称地层环境中的随钻电磁波电阻率测井仪器的电磁响应。在CN-FDTD仿真中,采用稳定双共轭梯度法(Bi-CGSTAB)作为求解器用于求解每个时间步所产生的线性方程组。通过对随钻电磁波电阻率测井仪在多层地层下的电磁响应进行数值仿真,其数值仿真结果表明CN-FDTD的计算结果准确,计算速度比普通FDTD提高3倍。Traditional FDTD simulation time-step sizes are limited by the smallest mesh size following the Courant stability condition. This makes the FDTD method need long computing time. However the ADI-FDTD method has larger truncation and dispersion errors than those of the traditional FDTD method The CN-FDTD method can overcome the stability condition and both the tnmcation and dispersion errors are similar to those of the traditional FDTD. An unconditionally stable finite-difference time-domain (FDTD) method in cylindrical coordinates was developed to analyze electromagnetic responses under axially symmetric logging while drilling (LWD) environments. The method is based on the application of the Crank-Nicolson scheme to the FDTD method in cylindrical coordinates. In order to solve the linear system generated by the CN-FDTD at each time step, the Bi-Conjugate Gradient Stabilized method (Bi-CGSTAB) was used. Numerical results demonstrate that the CN-FDTD method is very effective and a soeeduo factor of 3 can be achieved.
关 键 词:随钻测井 CN-FDTD 稳定双共轭梯度法 幅度比 相位差
分 类 号:TP391.9[自动化与计算机技术—计算机应用技术]
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在链接到云南高校图书馆文献保障联盟下载...
云南高校图书馆联盟文献共享服务平台 版权所有©
您的IP:3.136.26.17