锋电位检测信号的多元小波去噪方法研究  被引量:2

Multivariate Wavelet Denoising Method for Neuronal Spike Signals

在线阅读下载全文

作  者:万红[1] 李晓燕[1] 刘新玉[1] 张晓娜[1] 

机构地区:[1]郑州大学电气工程学院,郑州450001

出  处:《系统仿真学报》2013年第10期2487-2491,2498,共6页Journal of System Simulation

基  金:国家自然科学基金(60971110);河南省科技攻关计划项目(122102210102)

摘  要:神经元锋电位(spike)信号是研究大脑信息编码的基础,具有宽带、高频和小幅值特点,易受噪声干扰。为了提高检测信号的信噪比,根据微电极阵列记录信号中通道之间噪声相关性较强的特点,采用多元小波去噪方法对锋电位检测信号进行了噪声抑制,并基于仿真和实测数据将其与主成分(PCA)去噪算法、小波-PCA联合去噪算法进行了比较。仿真和实测数据结果表明,多元小波去噪方法不仅可以有效提高spike检测信号的信噪比,而且可以降低spike波形的畸变,为小幅值spike信号的检测和下一步分析研究奠定了良好的基础。Spikes which are the basis of the research of brain information are sensitive to noise because of broadband, high frequency and small amplitude signals. Based on the strong correlations among the noises in different channels, a new denoising method, multivariate wavelet denoising method, was developed for improving signal-to-noise ratio (SNR) of the spike signals. The proposed methods were evaluated and compared with both the principal component analysis (PCA) denoising method and PCA-wavelet combined denoising method using both real and simulated data sets. The result of simulation and real data shows that this method can not only improve SNR but also reduce spike waveform distortion, and that it is important for the detection and the next step analysis research of spikes.

关 键 词:微电极阵列 多元小波去噪 锋电位 信噪比 

分 类 号:TP391.9[自动化与计算机技术—计算机应用技术]

 

参考文献:

正在载入数据...

 

二级参考文献:

正在载入数据...

 

耦合文献:

正在载入数据...

 

引证文献:

正在载入数据...

 

二级引证文献:

正在载入数据...

 

同被引文献:

正在载入数据...

 

相关期刊文献:

正在载入数据...

相关的主题
相关的作者对象
相关的机构对象