检索规则说明:AND代表“并且”;OR代表“或者”;NOT代表“不包含”;(注意必须大写,运算符两边需空一格)
检 索 范 例 :范例一: (K=图书馆学 OR K=情报学) AND A=范并思 范例二:J=计算机应用与软件 AND (U=C++ OR U=Basic) NOT M=Visual
机构地区:[1]清华大学微电子与纳电子学系北京100084 [2]清华大学计算机科学与技术系,北京100084
出 处:《计算机辅助设计与图形学学报》2013年第10期1566-1573,共8页Journal of Computer-Aided Design & Computer Graphics
基 金:清华大学自主科研计划
摘 要:针对有限差分法和边界元法对常见液晶显示(LCD)面板配线结构进行电阻计算时存在计算精度差、时间长的问题,提出了LCD配线结构的二维边界元/解析混合电阻求解算法.通过对大规模不规则配线结构进行分析,并与规则形状进行对比,将其分割成为"长边"和"拐角"."长边"部分使用解析方法计算;"拐角"部分使用边界元方法计算,并使用将凹多边形切割成为多个凸多边形的切割算法提高计算精度.实验结果表明,该算法适用于实际的复杂LCD配线结构,在保证结果准确度的同时,计算速度比边界元法、有限差分法快1万倍以上,已被应用于LCD面板的设计验证中.Aiming at the deficiency in accuracy and efficiency of the finite difference method (FDM) and boundary element method (BEM) when calculating the wiring resistance in a liquid crystal display (LCD) panel, a hybrid boundary element and analytical method for the resistance calculation of two- dimensional LCD wiring is proposed. The method decomposes the LCD wiring into segments of "long edge" and "corner" shapes. The analytical method is used to calculate the resistance of "long edge", while BEM is employed to calculate the resistance of "corner". A concave polygon partition method is also proposed to improve the accuracy of BEM. The experimental results show that, the hybrid method is able to calculate the resistance oI LCD wirings in actual designs accurately, with the computational speed over 10000X faster than FDM and BEM. The proposed method has been applied to the design and verification of LCD panel.
关 键 词:液晶显示面板 配线电阻计算 凹多边形切割 边界元算法
分 类 号:TN391.9[电子电信—物理电子学]
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在链接到云南高校图书馆文献保障联盟下载...
云南高校图书馆联盟文献共享服务平台 版权所有©
您的IP:216.73.216.3