机构地区:[1]南京工业大学岩土工程研究所,南京210009 [2]江苏省土木工程防震技术研究中心,南京210009 [3]环境保护部核与辐射安全中心,北京100082 [4]中国地震局地球物理研究所,北京100081
出 处:《岩土力学》2013年第10期2737-2755,2795,共20页Rock and Soil Mechanics
基 金:国家科技重大专项(No.2011ZX06002-010-15);国家自然基金项目(No.41172258);教育部高等学校博士学科点专项科研基金项目(No.20113221110009)
摘 要:回顾了1994年美国Northridge地震、1995年日本阪神地震、1999年土耳其Kocaeli地震、1999年台湾集集地震、2008年中国汶川地震、2010年智利Maule地震、2010~2011新西兰Darfield地震及余震、2011年东日本地震中大量的、不同类型的液化实例调查与研究,发现这些地震的液化具有以下特点:(1)罕见的特大地震(Mw9.0)使远离震中300~400 km的新近人工填土发生严重的大规模液化;(2)特大地震(Ms8.0、Mw8.8)使远离震中的低烈度Ⅴ~Ⅵ度地区发生严重液化;(3)海岸、河岸附近地区的新近沉积冲积、湖积土,填筑时间不到50年的含细粒、砂砾人工填土,容易发生严重液化;(4)天然的砂砾土层液化发生严重液化;(5)发生了深达20 m的土层液化现象;(6)松散土层液化后可以恢复到震前状态并再次发生液化;(7)高细粒(粒径≤75 ?m)含量≥50%或高黏粒(粒径≤5 ?m)含量≥25%的低-中塑性土严重液化,对介于类砂土与类黏土之间的过渡性态土,有时地表未见液化现象;(8)液化土层的深度较深或厚度较小时,容易出现地面裂缝而无喷砂现象;有较厚的上覆非液化土层时,场地液化不一定伴随地表破坏。液化实例证明,第四系晚更新世Q3地层可以发生严重液化;黏粒含量不是评价细粒土液化可能性的一个可靠指标;低液限、高含水率的细粒土易发生液化,采用塑性指数PI、含水率wc与液限LL之比作为细粒土液化可能性评价的指标是适宜的。综合Boulanger和Idriss、Bray和Sincio、Seed和Cetin等的液化实例调查与室内试验研究成果,建议细粒土液化可能性的评价准则如下:PI <12且wc/LL>0.85的土为易液化土,12<PI≤20和/wc/LL≥0.80的土为可液化土;PI >20或wc/LL<0.80的土为不液化土。This paper reviews the characteristics of soil liquefaction-induced damage observed from the Northridge, USA earthquake, 1994, the Hanshin, Japan earthquake, 1995, the Kocaeli, Turkey earthquake, 1999, the Chi-Chi, Taiwan earthquake, 1999, in China, the Wenchuan, China earthquake, 2008, the Maule, Chile Earthquake, 2010, the Darfield and Christchurch, New Zealand earthquake, 2010 to 2011, and the great East Japan earthquake, 2011. There are several characteristics in the occurrence of liquefaction and consequence damage which are different from a number of cases experienced in these earthquakes. These are summed up as follows: (1) The unprecedented long duration of the shaking and extensive makes the occurrence of liquefaction in the newly reclaimed land, fill area is 300~400 km distant from the epicentral area attributed to the rarely encountered huge moment magnitude Mw9.0 earthquake. (2) A number of site liquefactions and lateral spreadings are observed in seismic intensity scales of Ⅴ and Ⅵ, an area of low intensity is attributed to the encountered magnitude scale Ms8.0 and Mw8.8 earthquakes. (3) Severe liquefactions in sites are observed having young alluvial, lacustrine deposits along rivers and sea bay areas, and in reclaimed land, fill area contains fine-grained soils, gravel sands in less than fifty years. (4) Severe liquefaction in natural gravel sand deposits occurs. (5) Soil liquefies in depth of 20 m. (6) Liquefaction and re-liquefaction of the sites over a large region do not result in densification of the loose deposit, future earthquakes of sufficient magnitude can again induce liquefaction. (7) Severe liquefaction occurs in low to moderate plasticity soils containing more than 50% fines content (grain size is, smaller than 0.075 mm) or more than 25% of clay content (grain size is, smaller than 0.005mm), however, field evidence of liquefaction may not be observed in transition behavior fine-grained soils between sand-like and clay-like behaviors. (8) G
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...