机构地区:[1]Faculty of Physics,National University of Uzbekistan [2]Department of Physics and Astronomy,The University of Texas at San Antonio [3]School of Physics and Technology,Wuhan University [4]Department of Physics,Andrews University
出 处:《Journal of Rare Earths》2013年第9期837-842,共6页稀土学报(英文版)
基 金:Project supported by National Natural Science Foundation of China(11205116);International Cooperation Program of the Ministry of Science and Technology of China(2011DFR50580)
摘 要:Spectra of absorption, luminescence, magnetic circular dichroism (MCD), and magnetic circular polarization of lumines- cence (MCPL) in Gd3Ga5O12:Eu3+ and Eu3Ga3O12 garnets were studied within the visible spectral range at 300 K. Analysis of the spectral and temperature dependences of the magnetooptical and optical spectra made it possible to identify the magneto-dipole (MD) and electro-dipole (ED) 4f→4f transitions occurring between Stark sublevels of the 7FJ (J=1, 2) and 5D0 multiplets in Eua+-containing garnet structures. Quantum mechanical "mixing" had significant influence on quasi-degenerate states of the non-Kramers rare-earth Eu3+ ion for Eu3GasOl2 in MCD due to forbidden MD transition 7F1→SD0 and for GdaGasOiE:EU3+ in MCPL due to MD 4f→4f transition 5Do→7F1 and forced ED-transition 5Do→7F2. A parameterized Hamiltonian defined to operate within the entire 4f(6) ground electronic configuration of Eu3+ ion was used to model the experimental Stark levels, including their irreducible rep- resentations and wavefunctions. The crystal-field parameters were determined through a Monte-Carlo method in which nine in- dependent crystal-field parameters, Bkq, were given random starting values and optimized using standard least-squares fitting between calculated and experimental levels. The final fitting standard deviation between 57 calculated-to-experimental levels was 0.73 meV.Spectra of absorption, luminescence, magnetic circular dichroism (MCD), and magnetic circular polarization of lumines- cence (MCPL) in Gd3Ga5O12:Eu3+ and Eu3Ga3O12 garnets were studied within the visible spectral range at 300 K. Analysis of the spectral and temperature dependences of the magnetooptical and optical spectra made it possible to identify the magneto-dipole (MD) and electro-dipole (ED) 4f→4f transitions occurring between Stark sublevels of the 7FJ (J=1, 2) and 5D0 multiplets in Eua+-containing garnet structures. Quantum mechanical "mixing" had significant influence on quasi-degenerate states of the non-Kramers rare-earth Eu3+ ion for Eu3GasOl2 in MCD due to forbidden MD transition 7F1→SD0 and for GdaGasOiE:EU3+ in MCPL due to MD 4f→4f transition 5Do→7F1 and forced ED-transition 5Do→7F2. A parameterized Hamiltonian defined to operate within the entire 4f(6) ground electronic configuration of Eu3+ ion was used to model the experimental Stark levels, including their irreducible rep- resentations and wavefunctions. The crystal-field parameters were determined through a Monte-Carlo method in which nine in- dependent crystal-field parameters, Bkq, were given random starting values and optimized using standard least-squares fitting between calculated and experimental levels. The final fitting standard deviation between 57 calculated-to-experimental levels was 0.73 meV.
关 键 词:: magnetic circular dichroism magnetic circular polarization luminescence adsorption GARNET non-Kramers ion rare earths
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...