磁性材料成型烧结生产调度优化方法及应用  被引量:1

Magnetic material molding sintering production scheduling optimization method and its application

在线阅读下载全文

作  者:刘业峰[1] 徐冠群[1] 潘全科[1] 柴天佑[1,2] 

机构地区:[1]东北大学流程工业综合自动化国家重点实验室,辽宁沈阳110819 [2]东北大学自动化研究中心,辽宁沈阳110819

出  处:《浙江大学学报(工学版)》2013年第9期1517-1523,共7页Journal of Zhejiang University:Engineering Science

基  金:国家自然科学基金资助项目(61174187);教育部基本科研业务费资助项目(N110208001);东北大学启动基金资助项目(29321006)

摘  要:建立以最小化提前和拖期时间、最小化炉重偏差为目标的混合整数线性规划模型,解决磁性材料成型-烧结两阶段生产调度问题.提出一种混合粒子群优化算法(HPSO)进行模型的求解,该算法采用基于订单的编码方式.针对粒子群算法易陷入局部最优,在迭代过程中引入模拟退火思想.改进粒子群算法的全局极值和个体极值选取方式,使算法尽快收敛到非劣最优解.生产现场实际数据仿真结果表明:该混合粒子群算法无论在求解精度,还是求解速度上均优于普通粒子群算法和遗传算法.A mixed integer linear programming model was built to solve molding and sintering two stage production scheduling problem of magnetic material with the optimization objectives of minimizing earliness and tardiness time and minimizing furnace heavy deviation. A hybrid particle swarm optimization (HPSO) algorithm was proposed to solve the model. Encoding based on the order was adopted in the algorithm. For the particle swarm optimization (PSO) algorithm is easy to fall into local minima, simulated annealing was introduced in the iteration process. In order to make the algorithm to converge to the non-inferior opti- mal solution as soon as possible, the selection mode of PSO's global extreme and individual extreme was improved. Simulation results with actual data of production field showed that the proposed hybrid particle swarm algorithm is better than the general particle swarm algorithm and genetic algorithm (GA) either in solving precision or speed.

关 键 词:多目标优化 粒子群优化算法 模拟退火 生产调度 磁性材料 

分 类 号:TP18[自动化与计算机技术—控制理论与控制工程]

 

参考文献:

正在载入数据...

 

二级参考文献:

正在载入数据...

 

耦合文献:

正在载入数据...

 

引证文献:

正在载入数据...

 

二级引证文献:

正在载入数据...

 

同被引文献:

正在载入数据...

 

相关期刊文献:

正在载入数据...

相关的主题
相关的作者对象
相关的机构对象