检索规则说明:AND代表“并且”;OR代表“或者”;NOT代表“不包含”;(注意必须大写,运算符两边需空一格)
检 索 范 例 :范例一: (K=图书馆学 OR K=情报学) AND A=范并思 范例二:J=计算机应用与软件 AND (U=C++ OR U=Basic) NOT M=Visual
作 者:张学峰[1] 陈宝国[1,2] 樊养余[2] 王巍[1,2]
机构地区:[1]中国空空导弹研究院,河南洛阳471009 [2]西北工业大学电子信息学院,陕西西安710072
出 处:《红外技术》2013年第9期560-566,共7页Infrared Technology
摘 要:红外技术发展到今天,红外凝视焦平面探测器阵列性能高、使用简单,从而成为红外系统的主流。但是,红外探测器的工艺和技术生产不出像可见光CCD那样均匀的红外器件,红外探测器阵列的非均匀性一直是红外凝视探测器的主要缺陷。人们开发了多种非均匀性校正算法,尤其是基于场景的自适应算法,极大地弥补了探测器的非均匀性缺陷。但是到目前为止,各种算法都有一定的局限性,尚不能彻底解决非均匀性问题。针对目前常用的几种非均匀性校正算法,包括时域高通滤波算法、神经网络算法、恒定统计量算法等,在天空、地面等不同场景条件下进行了仿真测试,对算法的实施效果进行了对比分析。Nowadays IRFPA (infrared focal plane array) is the main trend in infrared system. Because of technique limitation, IRFPA can't be as perfect as visible detectors. Nonuniformity has been the main defect of IRFPA for a long time. Many nonuniformity correction algorithms were developed in past decades, especially scene-based NUC algorithm. These algorithms remedy the defect of IRFPA largely. Up to now, every algorithm has its limitation and can't solve the nonuniformity problem thoroughly. In this paper, several NUC algorithms in common use, include temporal high-pass filter algorithm, neural network algorithm, constant-statistics constrain algorithm and moving scene-based algorithm, are evaluated with sky, cloud, and water surface scenes, and comparative analysis is done with the results of these algorithms.
关 键 词:红外焦平面阵列 非均匀性校正 时域高通滤波算法 神经网络算法 恒定统计量算法 空中场景 地面场景 算法仿真
分 类 号:TN215[电子电信—物理电子学]
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在链接到云南高校图书馆文献保障联盟下载...
云南高校图书馆联盟文献共享服务平台 版权所有©
您的IP:18.216.239.73