检索规则说明:AND代表“并且”;OR代表“或者”;NOT代表“不包含”;(注意必须大写,运算符两边需空一格)
检 索 范 例 :范例一: (K=图书馆学 OR K=情报学) AND A=范并思 范例二:J=计算机应用与软件 AND (U=C++ OR U=Basic) NOT M=Visual
机构地区:[1]湖南文理学院,湖南常德415000
出 处:《西安建筑科技大学学报(自然科学版)》2013年第4期493-498,共6页Journal of Xi'an University of Architecture & Technology(Natural Science Edition)
基 金:湖南省科技计划项目资助(2008FJ3067);湖南"十一五"重点建设学科项目资助
摘 要:研究了拉压弹性模量不同矩形截面悬臂杆由于自由端面上受切向集中力作用而产生的横向弯曲问题.拉压弹性模量不同矩形截面悬臂杆弯曲时,会形成弹性模量不同的拉伸区和压缩区.把拉压弹性模量不同悬臂杆看成两种材料组成的层合杆,先确定悬臂杆中性层的位置,再利用弹性理论推导出了悬臂杆的应力公式,把该应力公式计算结果与材料力学方法计算结果进行了比较.算例分析表明,采用材料力学方法研究拉压弹性模量不同悬臂杆的弯曲是有其局限的.The transverse bending of rectangular section cantilever bar with different elastic moduli in tension and compression areas caused by tangential force on its free end was studied in this paper. Rectangular section cantilever bar with dif- ferent elastic moduli in tension and compression areas can form tensile and compression areas in a curved state, and rec- tangular section cantilever bar is regarded as a laminated bar composed of two kinds of isotropic materials, so the location of neutral plane in cantilever bar is determined, and the stress formula is derived by using elastic theory. Then the calcula tion results got by the stress formula are compared with those obtained by mechanics of materials. The analysis of examples indicates that the method of mechanics of materials has its limitations when adopted to study the bending problem of rectangular section cantilever bar with different elastic moduli in tension and compression areas.
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在链接到云南高校图书馆文献保障联盟下载...
云南高校图书馆联盟文献共享服务平台 版权所有©
您的IP:216.73.216.200