检索规则说明:AND代表“并且”;OR代表“或者”;NOT代表“不包含”;(注意必须大写,运算符两边需空一格)
检 索 范 例 :范例一: (K=图书馆学 OR K=情报学) AND A=范并思 范例二:J=计算机应用与软件 AND (U=C++ OR U=Basic) NOT M=Visual
作 者:赵东方[1]
机构地区:[1]国家林业局中南林业调查规划设计院,长沙410014
出 处:《中南林业调查规划》2013年第3期36-40,共5页Central South Forest Inventory and Planning
摘 要:为了探究基于SPOT5影像的针叶林信息提取的方法,提高森林资源调查效率,为森林资源的合理开发和科学规划提供依据,以湖南省攸县黄丰桥国有林场为研究对象,利用SPOT5遥感影像及外业调查数据为数据源,运用最大似然分类、神经网络分类法、马氏距离分类法3种分类法对针叶林信息进行提取,并对其精度进行评价。研究结果表明:总体精度最高的是最大似然分类法89.223 0%,其次是神经网络分类法86.068 2%,马氏距离分类法是79.737 5%;Kappa系数分别为0.865 3,0.825 5,0.746;最大似然法在保证针叶林分类精度时,其它类型森林分类精度也比较高,能达到较为理想的效果。In order to explore the way of the coniferous forest information extraction, and improve the efficiency of forest resources survey, and provide a basis for the rational development of forest resources and scientific planning, Took Huangfengqiao forestry, farm of you county as the research object, the paper used the SPOT5 re mote sensing images and field investigation data as the data source, the coniferous forest information was extrac ted by the maximum likelihood classification, neural network classification, Mahalanobis distance classifica tion, to evaluate its accuracy. The results showed that: tile maximum likelihood classification, minimum dis tance classifier, Mahalanobis distance classification overall accuracy were 89.223 0% , 86.068 2%, 79. 737 5%. Kappa coefficient were 0. 865 3,0. 825 5,0. 746 5. Maximum likelihood method could guaranteed the coniferous forest classification accuracy, meanwhile other types of forest classification accuracy were rela tively high, they could also be effective methods.
分 类 号:TP79[自动化与计算机技术—检测技术与自动化装置]
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在链接到云南高校图书馆文献保障联盟下载...
云南高校图书馆联盟文献共享服务平台 版权所有©
您的IP:216.73.216.211