Two Opposite Extreme Events in Seasonal Mean Winter Rainfall over East China during the Past Three Decades  被引量:2

Two Opposite Extreme Events in Seasonal Mean Winter Rainfall over East China during the Past Three Decades

在线阅读下载全文

作  者:GUAN Zhao-Yong JIN Da-Chao 

机构地区:[1]Key Laboratory of Meteorological Disaster of Ministry of Education/School of Atmospheric Science, Nanjing University of Information Science and Technology

出  处:《Atmospheric and Oceanic Science Letters》2013年第5期240-247,共8页大气和海洋科学快报(英文版)

基  金:supported by the National Natural Science Foundation of China(41175062);the National Key Technology R&D Program(2007BAC29B02);A Project Funded bythe Priority Academic Program Development of Jiangsu Higher Education Institutions;supported by the Research Innovation Program for college graduates of Jiangsu Province

摘  要:In this study,the extremes of winter seasonal mean precipitation have been investigated by using daily precipitation data from 91 stations in East China,the National Centers for Environmental Prediction/the National Center for Atmospheric Research (NCEP/NCAR) monthly reanalysis,and sea surface temperature data from the Hadley Centre for 1979-2007.The largest anomalous rainfall amount was observed in regions south of the Yangtze River.In the most recent three decades,extreme events in the seasonal mean winter precipitation occurred in 1985 and 1997.Because it was influenced mainly by a La Ni(n)a event,the precipitation in 1985 showed a deficit following a stronger winter monsoon.The rainfall amount in 1997 was influenced by E1 Ni(n)o and was significantly larger than normal with a weaker winter monsoon.Both the circulation anomalies and wave energy dispersions during the winters of 1985 and 1997 differed significantly.In 1985,the North Atlantic Oscillation anomalously excited the Eurasian-Pacific teleconnection and circumglobal teleconnection phenomena.Consequently,Rossby wave energy propagated along the north and south branches of the westerlies,strengthening the East Asian trough along with a stronger winter monsoon,which facilitated the wintertime dry extreme in East China.In 1997,however,Rossby wave energy propagated from low latitudes northeastward into the southern part of China,resulting in a weaker winter monsoon and the wettest winter.The results of this study will be helpful for future monitoring and prediction of extreme winter rainfall events in East China.In this study,the extremes of winter seasonal mean precipitation have been investigated by using daily precipitation data from 91 stations in East China,the National Centers for Environmental Prediction/the National Center for Atmospheric Research(NCEP/NCAR)monthly reanalysis,and sea surface temperature data from the Hadley Centre for 1979–2007.The largest anomalous rainfall amount was observed in regions south of the Yangtze River.In the most recent three decades,extreme events in the seasonal mean winter precipitation occurred in 1985 and 1997.Because it was influenced mainly by a La Ni a event,the precipitation in 1985 showed a deficit following a stronger winter monsoon.The rainfall amount in 1997 was influenced by El Ni o and was significantly larger than normal with a weaker winter monsoon.Both the circulation anomalies and wave energy dispersions during the winters of 1985 and 1997 differed significantly.In 1985,the North Atlantic Oscillation anomalously excited the Eurasian-Pacific teleconnection and circumglobal teleconnection phenomena.Consequently,Rossby wave energy propagated along the north and south branches of the westerlies,strengthening the East Asian trough along with a stronger winter monsoon,which facilitated the wintertime dry extreme in East China.In1997,however,Rossby wave energy propagated from low latitudes northeastward into the southern part of China,resulting in a weaker winter monsoon and the wettest winter.The results of this study will be helpful for future monitoring and prediction of extreme winter rainfall events in East China.

关 键 词:extreme seasonal mean rainfall winter monsoon ENSO event Rossby waves East China 

分 类 号:P468.024[天文地球—大气科学及气象学]

 

参考文献:

正在载入数据...

 

二级参考文献:

正在载入数据...

 

耦合文献:

正在载入数据...

 

引证文献:

正在载入数据...

 

二级引证文献:

正在载入数据...

 

同被引文献:

正在载入数据...

 

相关期刊文献:

正在载入数据...

相关的主题
相关的作者对象
相关的机构对象