检索规则说明:AND代表“并且”;OR代表“或者”;NOT代表“不包含”;(注意必须大写,运算符两边需空一格)
检 索 范 例 :范例一: (K=图书馆学 OR K=情报学) AND A=范并思 范例二:J=计算机应用与软件 AND (U=C++ OR U=Basic) NOT M=Visual
作 者:熊金鑫[1] 张永军[1] 郑茂腾[1] 叶沅鑫[1]
机构地区:[1]武汉大学遥感信息工程学院,湖北武汉430079
出 处:《遥感学报》2013年第5期1103-1117,共15页NATIONAL REMOTE SENSING BULLETIN
基 金:国家高技术研究发展计划(863计划)(编号:2012AA12A301;2013AA12A401);国家自然科学基金(编号:41071233);中央高校基本科研业务费专项资金(编号:201121302020004);教育部博士研究生学术新人奖(编号:5052011213018)~~
摘 要:针对国产卫星数据特点及长条带影像匹配困难问题,提出了一种基于全球SRTM数据的影像匹配方法。本文探讨了长条带影像物理分块机制,并引入LBP/C算子实现了兴趣点的筛选。在全球SRTM数据的辅助下,采用投影轨迹法,建立了近似核线方程。沿核线方向,进行局部畸变改正,进而消除匹配窗口的几何变形与辐射差异,利用金字塔匹配策略,逐层进行相关匹配。最后,在原始层引入MPGC(Multi-photo Geometrically Constrained Matching)算法与RANSAC(Random Sample Consensus)算法,进行精化匹配,并剔除误匹配点。文中综合运用了小面元几何纠正法与基于控制网的匹配生长算法,从而提高了匹配点的精度与均匀性。本文方法可在并行环境下全自动实现不同分辨率、不同视角、不同时相的多轨道长条带影像匹配,获得高精度的同名点观测值。以天绘一号与资源三号卫星影像作为试验数据,与现有匹配算法进行对比结果表明该算法具有较好的鲁棒性,能够达到较高的匹配精度。Faced with the problem of unstable reliability in matching long-strip imagery of Chinese satellite, a matching algorithm is presented using the global Shuttle Radar Topography Mission (SRTM) data as elevation control. First, this algorithm employs the block partition mechanism, and introduces Local Binary Pattern/Contrast (LBP/C) operator to filter the interest points. Second, the global SRTM data is used to compute the true topographic relief within the image coverage. Based on the true topographic relief, the approximate epipolar line is constructed and the accuracy is analyzed. Third, on the pyramid level, two-dimensional correlation matching is executed to search for the optimal matches along the epipolar line. During the matching process, the geometry rectifica- tion method is applied to improve the accuracy of matching. Finally, on the original level, Multi-Photo Geometrically Constrained (MPGC) matching algorithm is adopted to refine the matching result, and Random Sample Consensus (RANSAC) is imbedded to eliminate mismatches. In order to ensure the distribution unifomaity of matches, the region-growing algorithm is introduced. The main advantage of the proposed algorithm is that it can realize the automatic matching for long-strip imagery of different Ground Sample Distance (GSD), different visual angles in parallel environment. Through the comparison between the proposed method and the mainly existing methods, the results show that the matching accuracy is improved.
分 类 号:P237[天文地球—摄影测量与遥感]
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在链接到云南高校图书馆文献保障联盟下载...
云南高校图书馆联盟文献共享服务平台 版权所有©
您的IP:216.73.216.112