Adsorption of Cr(Ⅲ) from acidic solutions by crop straw derived biochars  被引量:20

Adsorption of Cr(Ⅲ) from acidic solutions by crop straw derived biochars

在线阅读下载全文

作  者:Jingjian Pan Jun Jiang Renkou Xu 

机构地区:[1]State Key Laboratory of Soil and Sustainable Agriculture, Institute of Soil Science,Chinese Academy of Sciences [2]College of Resource and Environment, Nanjing Agricultural University

出  处:《Journal of Environmental Sciences》2013年第10期1957-1965,共9页环境科学学报(英文版)

基  金:supported by the National Natural Science Foundation of China(No.41230855);the National Key Technology R&D Program of China(No.2012BAJ24B06)

摘  要:Cr(Ⅲ) adsorption by biochars generated from peanut, soybean, canola and rice straws is investigated with batch methods. Adsorption of Cr(Ⅲ) increased as pH rose from 2.5 to 5.0. Adsorption of Cr(Ⅲ) led to peak position shifts in the FFIR-PAS spectra of the biochars and made zeta potential values less negative, suggesting the formation of surface complexes between Cr^3+ and functional groups on the biochars. The adsorption capacity of Cr(Ⅲ) followed the order: peanut straw char 〉 soybean straw char 〉 canola straw char 〉 rice straw char, which was consistent with the content of acidic functional groups on the biochars. The increase in Cr^3+ hydrolysis as the pH rose was one of the main reasons for the increased adsorption of Cr(Ⅲ) by the biochars at higher pH values. Cr(llI) can be adsorbed by the biochars through electrostatic attraction between negative surfaces and Cr^3+, but the relative contribution of electrostatic adsorption was less than 5%. Therefore, Cr(Ⅲ) was mainly adsorbed by the biochars through specific adsorption. The Langumir and Freundlich equations fitted the adsorption isotherms well and can therefore be used to describe the adsorption behavior of Cr(Ⅲ) by the crop straw biochars. The crop straw biochars have great adsorption capacities for Cr(Ⅲ) under acidic conditions and can be used as adsorbents to remove Cr(Ⅲ) from acidic wastewaters.Cr(Ⅲ) adsorption by biochars generated from peanut, soybean, canola and rice straws is investigated with batch methods. Adsorption of Cr(Ⅲ) increased as pH rose from 2.5 to 5.0. Adsorption of Cr(Ⅲ) led to peak position shifts in the FFIR-PAS spectra of the biochars and made zeta potential values less negative, suggesting the formation of surface complexes between Cr^3+ and functional groups on the biochars. The adsorption capacity of Cr(Ⅲ) followed the order: peanut straw char 〉 soybean straw char 〉 canola straw char 〉 rice straw char, which was consistent with the content of acidic functional groups on the biochars. The increase in Cr^3+ hydrolysis as the pH rose was one of the main reasons for the increased adsorption of Cr(Ⅲ) by the biochars at higher pH values. Cr(llI) can be adsorbed by the biochars through electrostatic attraction between negative surfaces and Cr^3+, but the relative contribution of electrostatic adsorption was less than 5%. Therefore, Cr(Ⅲ) was mainly adsorbed by the biochars through specific adsorption. The Langumir and Freundlich equations fitted the adsorption isotherms well and can therefore be used to describe the adsorption behavior of Cr(Ⅲ) by the crop straw biochars. The crop straw biochars have great adsorption capacities for Cr(Ⅲ) under acidic conditions and can be used as adsorbents to remove Cr(Ⅲ) from acidic wastewaters.

关 键 词:BIOCHAR crop straw Cr(Ⅲ) adsorption functional groups zeta potential 

分 类 号:X703[环境科学与工程—环境工程]

 

参考文献:

正在载入数据...

 

二级参考文献:

正在载入数据...

 

耦合文献:

正在载入数据...

 

引证文献:

正在载入数据...

 

二级引证文献:

正在载入数据...

 

同被引文献:

正在载入数据...

 

相关期刊文献:

正在载入数据...

相关的主题
相关的作者对象
相关的机构对象