检索规则说明:AND代表“并且”;OR代表“或者”;NOT代表“不包含”;(注意必须大写,运算符两边需空一格)
检 索 范 例 :范例一: (K=图书馆学 OR K=情报学) AND A=范并思 范例二:J=计算机应用与软件 AND (U=C++ OR U=Basic) NOT M=Visual
作 者:刘伟伟[1] 金子信悟[1] 方国清[1] 孙洪丹[1] 夏丙波[1] 郑军伟[1] 李德成[1]
机构地区:[1]江苏省锂离子电池材料重点实验室,苏州大学化学电源研究所,苏州215006
出 处:《高等学校化学学报》2013年第10期2395-2400,共6页Chemical Journal of Chinese Universities
基 金:国家自然科学基金(批准号:21073130);美国富美实(FMC)公司项目资助
摘 要:采用喷雾干燥法制备了xLi[Li1/3Mn2/3]O2-(1-x)LiNi5/12Mn5/12Co2/12O2(0≤x≤0.8)系列富锂层状固溶体正极材料,并通过X射线衍射(XRD)、高分辨透射电子显微镜(HRTEM)、X射线光电子能谱(XPS)、电化学阻抗测试(EIS)以及充放电测试等多种手段研究了样品组分中Li2MnO3含量变化对材料结构及电化学性能的影响.研究发现,材料的微观结构随着Li2MnO3含量的增加而逐渐发生转变.当x≤0.2时,样品的微观结构与其母体材料LiNi5/12Mn5/12Co2/12O2相似;而当x≥0.4时,样品的微观结构与Li2MnO3有很高的相似性.当x=0.3时,材料表现出两相共存的特征.HRTEM结果显示,随着Li2MnO3含量的增加,样品中过渡金属原子的排列逐渐由长程有序转变为长程无序而短程有序,并且在高Li2MnO3含量的样品中观察到了金属阳离子混排的现象.充放电测试结果表明,当x≤0.6时,材料的放电比容量随着x的增加而增加;当x>0.6时,其放电比容量则随着x的增加而下降;当x=0.6时,放电比容量最高,室温及高温(50℃)下分别为260和304 mA·h/g.EIS研究结果表明,这种微观结构上由有序向无序的转变会导致材料电荷转移阻抗的增加,进而影响材料的电化学性能.Li-rieh layered cathode materials xLi[Lil/3Mn2/3]O2·(1-x)LiNi5/12Mns/12CO2/12O2(0≤z≤0.8)were prepared via spray-dry method. X-ray diffraction( XRD), high resolution transmission electron microsco- py ( HRTEM), X-ray photoelectron spectroscopy ( XPS), electrochemical impedance spectroscopy ( EIS ) and charge-discharge tests were carried out to investigate the influence of the amount of Li2 MnO3 component on the structure and electrochemical properties of the materials. It is found that the micro-structure changes with the increase of Li2MnO3 content in composition. In the case x〈0. 2, the crystal structure of material is similar to parent material LiNis/x2Mns/2 Co2/12 02. When x I〉 0.4, the materials show Li2MnO3-like structure. And the two structures co-exist in sample of x = 0. 3. HRTEM observations reveal that the arrangement of transition mental ions in the internal structure transfer from long-range order to long-range disorder and short-range order. As the x value increases from 0. 1 to 0. 8, the discharge capacity of material increases gradually when x〈0. 6, and decreases gradually when x〉0. 6. It is reasonable considering the increase of charge transfer re- sistence detected by EIS. As a result, when x = 0. 6, the material exhibts the highest discharge capacity, which is about 260 mA h/g at room tempreature and 304 mA h/g at high tempreature (50 ℃ ). The EIS research shows that the micro-structural transformation from order to disorder increases the charge transfer re- sistance of material, thus yield poor electrochemical performances.
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在链接到云南高校图书馆文献保障联盟下载...
云南高校图书馆联盟文献共享服务平台 版权所有©
您的IP:3.140.198.85