Preparation and Characterization of the System SiO_2-CaO-P_2O_5 Bioactive Glasses by Microemulsion Approach  被引量:1

Preparation and Characterization of the System SiO_2-CaOP_2O_5 Bioactive Glasses by Microemulsion Approach

在线阅读下载全文

作  者:王洪新 CHEN Xiaoming WANG Youfa CHENG Dongji 

机构地区:[1]Biomedical Materials and Engineering Research Center,Wuhan University of Technology [2]Department of Mechanical and Electronic Engineering,West Anhui University

出  处:《Journal of Wuhan University of Technology(Materials Science)》2013年第5期1053-1057,共5页武汉理工大学学报(材料科学英文版)

基  金:Funded by Guangdong Science and Technology Tackling Project(No.2010B031100002);the Orientation of Lu'an Commissioned the West Anhui University Municipal Research Project(No.2011LW009)

摘  要:The system of SiO2-CaO-P2O5 bioactive glasses (BG) were successfully synthesized by microemulsion approach. X-ray diffraction (XRD),scanning electron micro scopy(SEM) and energy dispersive X-ray (EDX) analyses, transmission electron microscopy(TEM),Fourier transform infrared spectroscopy (FTIR), BET N2 gas adsorption analysis techniques were utilized in order to evaluate the phase composition, dimension, morphology, interconnectivity of pores and particle size of the synthesized BG respectiveely. The biocompatibility of BG was assessed by using dimethylthiazol diphenyl tetrazolium bromide (MTT).The BG scaffolds were implanted in rabbit mandibles and studied histologically.The results showed that the BG with a particle size less than 100 nm was prepared successfully. The measured BET specific surface area and pore volume was 113.9 m2/g and 0.28 cm3/g respectively. Cell cultures revealed that BG has been shown to have good biocompatibility and is also beneficial to the survival of Schwann cells, which can promote cell proliferation in vivo assay indicating that the BG can promote osteoconductivity.The system of SiO2-CaO-P2O5 bioactive glasses (BG) were successfully synthesized by microemulsion approach. X-ray diffraction (XRD),scanning electron micro scopy(SEM) and energy dispersive X-ray (EDX) analyses, transmission electron microscopy(TEM),Fourier transform infrared spectroscopy (FTIR), BET N2 gas adsorption analysis techniques were utilized in order to evaluate the phase composition, dimension, morphology, interconnectivity of pores and particle size of the synthesized BG respectiveely. The biocompatibility of BG was assessed by using dimethylthiazol diphenyl tetrazolium bromide (MTT).The BG scaffolds were implanted in rabbit mandibles and studied histologically.The results showed that the BG with a particle size less than 100 nm was prepared successfully. The measured BET specific surface area and pore volume was 113.9 m2/g and 0.28 cm3/g respectively. Cell cultures revealed that BG has been shown to have good biocompatibility and is also beneficial to the survival of Schwann cells, which can promote cell proliferation in vivo assay indicating that the BG can promote osteoconductivity.

关 键 词:MICROEMULSION bioactive glass NANOPARTICLES POROUS BIOCOMPATIBILITY 

分 类 号:R944[医药卫生—药剂学]

 

参考文献:

正在载入数据...

 

二级参考文献:

正在载入数据...

 

耦合文献:

正在载入数据...

 

引证文献:

正在载入数据...

 

二级引证文献:

正在载入数据...

 

同被引文献:

正在载入数据...

 

相关期刊文献:

正在载入数据...

相关的主题
相关的作者对象
相关的机构对象