新型无摆动双机驱动振动机自同步理论  

Self-Synchronous Theory of Novel No-Swing Vibrating Mechanism Driven by Two Motors

在线阅读下载全文

作  者:李鹤[1] 刘丹[1] 李叶[1] 闻邦椿[1] 

机构地区:[1]东北大学机械工程与自动化学院,辽宁沈阳110819

出  处:《东北大学学报(自然科学版)》2013年第10期1446-1450,共5页Journal of Northeastern University(Natural Science)

基  金:国家自然科学基金资助项目(51175071);中央高校基本科研业务费专项资金资助项目(N120203001);辽宁省自然科学基金资助项目(201102072)

摘  要:研究了一种新型无摆动双机驱动振动机的自同步运动条件和自同步运动稳定性条件.该振动机由内、外两个质体组成,两偏心转子的旋转中心与内质体质心在同一条竖直轴上,偏心转子的惯性力对该轴的力矩为零,从而消除了该振动机的摆动.利用拉格朗日方程建立了振动机的运动微分方程,并利用平均小参数法得到了偏心转子的无量纲耦合方程;由偏心转子耦合方程零解存在条件得到了振动机实现自同步运动条件,并根据Routh-Hurwitz判据得到振动机同步运行的稳定性条件.数值仿真验证了上述理论的正确性.The motion and stability conditions of self-synchronization were studied for a novel no- swing vibrating mechanism driven by two motors. The vibrating mechanism comprises an inner rigid frame and an outer rigid frame. The rotational centers of two eccentric rotors are in line with the inner rigid frame center of mass along a vertical axis. Therefore the moment generated by the inertial force of eccentric rotors to the vertical axis is zero, thus eliminating the swing of the vibrating mechanism. The differential motion equations of the vibrating mechanism were established by the Lagrange equation, and the dimensionless coupled motion equation of the eccentric rotors was obtained with the modified average small parameter method. The existence condition of zero solution for the dimensionless coupled motion equation of the eccentric rotors was used to achieve the condition to implement self-synchronous motion of the vibrating mechanism, and the Routh-Hurwitz criterion was used to derive the stability conditions of self- synchronous motion. The numerical simulations verify the correctness of the proposed theories.

关 键 词:自同步运动 振动机 稳定性 频率捕获 振动同步传动 

分 类 号:TH113[机械工程—机械设计及理论]

 

参考文献:

正在载入数据...

 

二级参考文献:

正在载入数据...

 

耦合文献:

正在载入数据...

 

引证文献:

正在载入数据...

 

二级引证文献:

正在载入数据...

 

同被引文献:

正在载入数据...

 

相关期刊文献:

正在载入数据...

相关的主题
相关的作者对象
相关的机构对象