检索规则说明:AND代表“并且”;OR代表“或者”;NOT代表“不包含”;(注意必须大写,运算符两边需空一格)
检 索 范 例 :范例一: (K=图书馆学 OR K=情报学) AND A=范并思 范例二:J=计算机应用与软件 AND (U=C++ OR U=Basic) NOT M=Visual
作 者:ZHU Wu-jia GONG Ning-sheng DU Guo-ping
机构地区:[1]School of Information Science and Technology, Nanjing University of Aeronautics and Astronau- tics, Nanjing 210016, China State Key Laboratory of Software Development Environment, Beihang University, Beijin9 100191, China [2]School of Electronics and Information Engineering, Nanjing Uni- versity of Technology, Nanjing 210009, China) [3]Institute of Modern Logic and Applications, Nanjing University, Nanjing 210093, China
出 处:《Chinese Quarterly Journal of Mathematics》2013年第3期360-365,共6页数学季刊(英文版)
摘 要:Abstract: Ref [5] provides a logical-mathematical explanation of the incompatibility ofLeibniz's secant and tangent lines in medium logic. However, the expression (*)(△y/△x) ismeaningful and dy/dx is the tangent slope) derived from ⑦ and ⑧ in §4 of Ref [5] is unimaginablewithin the framework of two-valued logic, why shouldn't the same conflicting concluslon be reached in the medium logic calculus? This paper has subjected these questions to careful logical analysis, and approached them from the perspective of logical mathematics. As the two approaches have led to the identical conclusion, the paper thereby rigorously and thoroughlv answers these questions.
关 键 词:CALCULUS limit theory medium logic potential infinity actual infinity
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在链接到云南高校图书馆文献保障联盟下载...
云南高校图书馆联盟文献共享服务平台 版权所有©
您的IP:216.73.216.117