检索规则说明:AND代表“并且”;OR代表“或者”;NOT代表“不包含”;(注意必须大写,运算符两边需空一格)
检 索 范 例 :范例一: (K=图书馆学 OR K=情报学) AND A=范并思 范例二:J=计算机应用与软件 AND (U=C++ OR U=Basic) NOT M=Visual
作 者:王修信[1,2] 秦丽梅[1,3] 罗玲[1] 张晓朋[1,4] 汤谷云[1]
机构地区:[1]广西师范大学计算机科学与信息工程学院,广西桂林541004 [2]北京师范大学遥感科学国家重点实验室,北京100875 [3]广东第二师范学院计算机系,I510303 [4]湖南科技学院数学与计算科学系,湖南永州425100
出 处:《计算机工程与应用》2013年第20期259-262,共4页Computer Engineering and Applications
基 金:国家自然科学基金(No.41061040);广西研究生教育创新计划项目(No.2010106020812M59)
摘 要:为了研究遥感图像森林林型SVM分类多特征的选择对提高分类精度的影响,选取小波变换不同尺度纹理、四种植被指数、最优波段光谱特征等不同组合构成林型分类多特征向量进行分类。结果表明,纹理与植被指数、最优波段组合多特征的森林林型分类精度最高,阔叶林、针叶林和竹林的分类精度分别为84.4%、86.5%、91.0%,比纹理单类特征分类分别提高4.1%、4.0%、1.1%,比植被指数单类特征分类分别提高9.2%、11.8%、11.9%。多特征的分类精度一般要高于单类特征,纹理能够较明显提高林型可分性,植被指数也有一定的效果,但最优波段光谱特征的效果较弱。In order to study the impact of multifeature selection on remote sensing forest species classification with SVM, tex ture features at differrent scales of wavelet transform, four vegetation indexes and optimum band spectral features are selected to make up classification multifeature vectors. Results show that the forest species classification accuracies with texture features, vegetation indexes and optimum band spectral features are the highest. They are respectively 84.4%, 86.5% and 91.0% for broad leaf, conifer and bamboo, 4.1%, 4.0%, 1.1% higher than those with only texture features, and 9.2%, 11.8%, 11.9% higher than those with only vegetation indexes. Generally speaking, the classification accuracies with multifeatures are higher than those with single feature. Texture features in the multifeature vectors could improve forest species separability obviously, and vegeta tion indexes have certain effectiveness. However, optimum band spectral features show weak effects on the raise of forest spe cies classification accuracies.
关 键 词:森林林型分类 遥感 支持向量机(SVM) 多特征选择 小波变换
分 类 号:TP79[自动化与计算机技术—检测技术与自动化装置]
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在链接到云南高校图书馆文献保障联盟下载...
云南高校图书馆联盟文献共享服务平台 版权所有©
您的IP:216.73.216.30