基于语义分析的微博热点话题发现技术研究  被引量:3

Research of micro-blog's hot topic detection technology based on semantic analysis

在线阅读下载全文

作  者:柏建普[1] 田芳[1] 

机构地区:[1]内蒙古科技大学信息与工程学院,内蒙古包头014010

出  处:《内蒙古科技大学学报》2013年第3期283-286,共4页Journal of Inner Mongolia University of Science and Technology

摘  要:近年来,微博热点话题发现已经成为当前网络舆情分析研究的热点.本文针对微博信息的碎片化、口语化等短文本特点,为解决向量空间模型(VSM)文本表示方法存在高维度、稀疏,及同义多义等问题,采用潜在语义分析法对微博信息进行建模,再通过贝叶斯分类算法实现话题发现.并采用J2EE开发包及Eclipse集成开发环境,结合Hibernate,Lucene等技术实现了微博热点话题发现系统,实验表明这种方法是有效的.The hot topics of micro-blog detecting has become the current research focuses of Internet public opinion information. In order to solve the existing problems of high-dimension, sparse, synonymy and polysemy from the Vector Space Model (VSM) text presentation, the micro-blog information model was developed using LSA for the short texts of the fragment, colloquial micro blog informa- tion,then the topic detection was achieved through the Bayesian classification algorithm. Furthermore, the micro blog topic detecting system was constructed by adopting software developer's kit J2EE, the integrated development environment Eclipse and techniques such as Hibernate and Lucene, and the operation of the system was proved to be effective.

关 键 词:语义分析微博 热点 话题发现 

分 类 号:TP391[自动化与计算机技术—计算机应用技术]

 

参考文献:

正在载入数据...

 

二级参考文献:

正在载入数据...

 

耦合文献:

正在载入数据...

 

引证文献:

正在载入数据...

 

二级引证文献:

正在载入数据...

 

同被引文献:

正在载入数据...

 

相关期刊文献:

正在载入数据...

相关的主题
相关的作者对象
相关的机构对象