检索规则说明:AND代表“并且”;OR代表“或者”;NOT代表“不包含”;(注意必须大写,运算符两边需空一格)
检 索 范 例 :范例一: (K=图书馆学 OR K=情报学) AND A=范并思 范例二:J=计算机应用与软件 AND (U=C++ OR U=Basic) NOT M=Visual
作 者:CHEN HuaiHui
机构地区:[1]Department of Mathematics, Nanjing Normal University
出 处:《Science China Mathematics》2013年第11期2327-2334,共8页中国科学:数学(英文版)
基 金:supported by National Natural Science Foundation of China(Grant No.11071083)
摘 要:The classical Schwarz-Pick lemma and Julia lemma for holomorphic mappings on the unit disk D are generalized to real harmonic mappings of the unit disk, and the results are precise. It is proved that for a harmonic mapping U of D into the open interval I = (-1, 1), AU(z)/cosU(z)π/2≤4/π 1/1-|z|^2 holds for z E D, where Au(z) is the maximum dilation of U at z. The inequality is sharp for any z E D and any value of U(z), and the equality occurs for some point in D if and only if U(z) = 4Re {arctan ~a(z)}, z E D, with a M&bius transformation φa of D onto itself.The classical Schwarz-Pick lemma and Julia lemma for holomorphic mappings on the unit diskD are generalized to real harmonic mappings of the unit disk,and the results are precise.It is proved that for a harmonic mapping U of D into the open interval I=(1,1),ΛU(z)/cosU(z)π/2≤4/π1/1|z|2 holds for z∈D,whereΛU(z)is the maximum dilation of U at z.The inequality is sharp for any z∈D and any value of U(z),and the equality occurs for some point in D if and only if U(z)=4πRe{arctan(z)},z∈D,with a Mbius transformation of D onto itself.
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在链接到云南高校图书馆文献保障联盟下载...
云南高校图书馆联盟文献共享服务平台 版权所有©
您的IP:216.73.216.38