The Schwarz-Pick lemma and Julia lemma for real planar harmonic mappings  被引量:4

The Schwarz-Pick lemma and Julia lemma for real planar harmonic mappings

在线阅读下载全文

作  者:CHEN HuaiHui 

机构地区:[1]Department of Mathematics, Nanjing Normal University

出  处:《Science China Mathematics》2013年第11期2327-2334,共8页中国科学:数学(英文版)

基  金:supported by National Natural Science Foundation of China(Grant No.11071083)

摘  要:The classical Schwarz-Pick lemma and Julia lemma for holomorphic mappings on the unit disk D are generalized to real harmonic mappings of the unit disk, and the results are precise. It is proved that for a harmonic mapping U of D into the open interval I = (-1, 1), AU(z)/cosU(z)π/2≤4/π 1/1-|z|^2 holds for z E D, where Au(z) is the maximum dilation of U at z. The inequality is sharp for any z E D and any value of U(z), and the equality occurs for some point in D if and only if U(z) = 4Re {arctan ~a(z)}, z E D, with a M&bius transformation φa of D onto itself.The classical Schwarz-Pick lemma and Julia lemma for holomorphic mappings on the unit diskD are generalized to real harmonic mappings of the unit disk,and the results are precise.It is proved that for a harmonic mapping U of D into the open interval I=(1,1),ΛU(z)/cosU(z)π/2≤4/π1/1|z|2 holds for z∈D,whereΛU(z)is the maximum dilation of U at z.The inequality is sharp for any z∈D and any value of U(z),and the equality occurs for some point in D if and only if U(z)=4πRe{arctan(z)},z∈D,with a Mbius transformation of D onto itself.

关 键 词:harmonic mappings Schwarz-Pick lemma Julia lemma 

分 类 号:O174.3[理学—数学]

 

参考文献:

正在载入数据...

 

二级参考文献:

正在载入数据...

 

耦合文献:

正在载入数据...

 

引证文献:

正在载入数据...

 

二级引证文献:

正在载入数据...

 

同被引文献:

正在载入数据...

 

相关期刊文献:

正在载入数据...

相关的主题
相关的作者对象
相关的机构对象