Universal Inequalities for Lower Order Eigenvalues of Self-Adjoint Operators and the Poly-Laplacian  被引量:2

Universal Inequalities for Lower Order Eigenvalues of Self-Adjoint Operators and the Poly-Laplacian

在线阅读下载全文

作  者:He Jun SUN Ling Zhong ZENG 

机构地区:[1]Department of Applied Mathematics,Nanjing University of Science and Technology [2]Department of Mathematics,Faculty of Science and Engineering,Saga University

出  处:《Acta Mathematica Sinica,English Series》2013年第11期2209-2218,共10页数学学报(英文版)

基  金:supported by National Natural Science Foundation of China(Grant No.11001130)

摘  要:In this paper, we first establish an abstract inequality for lower order eigenvalues of a self-adjoint operator on a Hilbert space which generalizes and extends the recent results of Cheng et al. (Calc. Var. Partial Differential Equations, 38, 409-416 (2010)). Then, making use of it, we obtain some universal inequalities for lower order eigenvalues of the biharmonic operator on manifolds admitting some speciM functions. Moreover, we derive a universal inequality for lower order eigenvalues of the poly-Laplacian with any order on the Euclidean space.In this paper, we first establish an abstract inequality for lower order eigenvalues of a self-adjoint operator on a Hilbert space which generalizes and extends the recent results of Cheng et al. (Calc. Var. Partial Differential Equations, 38, 409-416 (2010)). Then, making use of it, we obtain some universal inequalities for lower order eigenvalues of the biharmonic operator on manifolds admitting some speciM functions. Moreover, we derive a universal inequality for lower order eigenvalues of the poly-Laplacian with any order on the Euclidean space.

关 键 词:EIGENVALUE self-adjoint operator biharmonic operator poly-Laplacian Riemannian man- ifold 

分 类 号:O178[理学—数学]

 

参考文献:

正在载入数据...

 

二级参考文献:

正在载入数据...

 

耦合文献:

正在载入数据...

 

引证文献:

正在载入数据...

 

二级引证文献:

正在载入数据...

 

同被引文献:

正在载入数据...

 

相关期刊文献:

正在载入数据...

相关的主题
相关的作者对象
相关的机构对象