基于改进实例推理的话务故障诊断专家系统  

Traffic Fault Diagnosis Expert System Based on the Improvement of Case-based Reasoning

在线阅读下载全文

作  者:张亮亮[1] 杨威[2] 

机构地区:[1]山西师范大学数学与计算机科学学院,山西临汾041004 [2]山西师范大学网络中心,山西临汾041004

出  处:《山西师范大学学报(自然科学版)》2013年第3期44-47,共4页Journal of Shanxi Normal University(Natural Science Edition)

基  金:山西省高等学校科技项目(20110015)资助

摘  要:传统的K最近邻算法(KNN)算法可以解决话务分析专家系统中的求解问题,但KNN算法的不足在于K值的确定与执行效率,因此改进K值选取与加权方法,对提高算法运行效率与准确性具有重要意义.本文提出了一种改进K值选取方法及依托频率的权重计算方法,用于实例检索,并采用改进后的实例推理,构建了话务故障专家系统.实验结果表明,改进算法在实例匹配准确性与执行效度上,均优于传统方法.Traditional K-Neavest Neighbor (KNN) algorithm resolves the problem of solving in traffic analysis expert system, but the disadvantage of KNN is the determination of the K value and the implementation of efficiency. The improvement of the selec- tion and weight method of K value are significant in enhancing the running efficiency and accuracy of the algorithm. A selection method for improving K value and weight algorithm method relying on the frequency are presented, and applied to case retrieval. The expert system of traffic fault diagnosis is built by improving case-based reasoning. The experimental results show that the improved al- gorithm are better than that of traditional methods in the case matching accuracy and the validity of execution.

关 键 词:话务故障分析 基于实例推理 K最近相邻法 

分 类 号:TP182[自动化与计算机技术—控制理论与控制工程]

 

参考文献:

正在载入数据...

 

二级参考文献:

正在载入数据...

 

耦合文献:

正在载入数据...

 

引证文献:

正在载入数据...

 

二级引证文献:

正在载入数据...

 

同被引文献:

正在载入数据...

 

相关期刊文献:

正在载入数据...

相关的主题
相关的作者对象
相关的机构对象