Debye-Hckel solution for steady electro-osmotic flow of micropolar fluid in cylindrical microcapillary  

Debye-Hckel solution for steady electro-osmotic flow of micropolar fluid in cylindrical microcapillary

在线阅读下载全文

作  者:A. A. SIDDIQUI A. LAKHTAKIA 

机构地区:[1]Department of Basic Sciences, Bahauddin Zakariya University [2]Nanoengineered Metamaterials Group, Department of Engineering Science and Mechanics,Pennsylvania State University, University Park

出  处:《Applied Mathematics and Mechanics(English Edition)》2013年第11期1305-1326,共22页应用数学和力学(英文版)

摘  要:Analytic expressions for speed, flux, microrotation, stress, and couple stress in a micropolar fluid exhibiting a steady, symmetric, and one-dimensional electro-osmotic flow in a uniform cylindrical microcapillary were derived under the constraint of the Debye-Hiickel approximation, which is applicable when the cross-sectional radius of the microcapillary exceeds the Debye length, provided that the zeta potential is sufficiently small in magnitude. Since the aciculate particles in a micropolar fluid can rotate without translation, micropolarity affects the fluid speed, fluid flux, and one of the two non-zero components of the stress tensor. The axial speed in a micropolar fluid intensifies when the radius increases. The stress tensor is confined to the region near the wall of the mi- crocapillary, while the couple stress tensor is uniform across the cross-section.Analytic expressions for speed, flux, microrotation, stress, and couple stress in a micropolar fluid exhibiting a steady, symmetric, and one-dimensional electro-osmotic flow in a uniform cylindrical microcapillary were derived under the constraint of the Debye-Hiickel approximation, which is applicable when the cross-sectional radius of the microcapillary exceeds the Debye length, provided that the zeta potential is sufficiently small in magnitude. Since the aciculate particles in a micropolar fluid can rotate without translation, micropolarity affects the fluid speed, fluid flux, and one of the two non-zero components of the stress tensor. The axial speed in a micropolar fluid intensifies when the radius increases. The stress tensor is confined to the region near the wall of the mi- crocapillary, while the couple stress tensor is uniform across the cross-section.

关 键 词:couple stress ELECTRO-OSMOSIS MICROCAPILLARY micropolar fluid microrota-tion steady flow 

分 类 号:O363.2[理学—流体力学]

 

参考文献:

正在载入数据...

 

二级参考文献:

正在载入数据...

 

耦合文献:

正在载入数据...

 

引证文献:

正在载入数据...

 

二级引证文献:

正在载入数据...

 

同被引文献:

正在载入数据...

 

相关期刊文献:

正在载入数据...

相关的主题
相关的作者对象
相关的机构对象