检索规则说明:AND代表“并且”;OR代表“或者”;NOT代表“不包含”;(注意必须大写,运算符两边需空一格)
检 索 范 例 :范例一: (K=图书馆学 OR K=情报学) AND A=范并思 范例二:J=计算机应用与软件 AND (U=C++ OR U=Basic) NOT M=Visual
机构地区:[1]哈尔滨工程大学信息与通信工程学院,黑龙江哈尔滨150001
出 处:《应用科技》2013年第5期23-28,共6页Applied Science and Technology
基 金:国家自然科学基金资助项目(61074076)
摘 要:研究压缩感知的重构算法,分析了平滑l0(smoothed l0,SL0)的理论基础.SL0算法通过利用平滑的高斯函数去逼近l0范数,将重构中的l0范数最小化问题转化为求解光滑函数最小值的最优化问题.针对算法中最速下降法存在"锯齿现象"和收敛速度慢等缺点,引入数值最优化理论中的混合优化算法,提出了一种基于混合优化的SL0重构算法(HOSL0).该算法结合了最速下降法和修正牛顿法的优点,提高了算法的重构精度和速度.仿真实验表明,HOSL0算法与同类算法相比性能有明显提高,同时在重构速度上比BP算法快了2个数量级.This paper researches the reconstruction algorithm of compressive sensing, analyzes the theoretical basis of smoothed l0 algorithm (SL0). Through the use of a sequence of smoothed Gauss functions to approximate the l0 norm, the problem of minimization of the lo norm in the reconstruction can be transformed into a convex optimization problem for the smoothed function. This paper proposes a new reconstruction algorithm to overcome the shortcomings of the gradient method, such as "notched effect" and the slow convergence. The algorithm using Smoothed l0 based on Hybrid Optimization algorithm (HOSL0) combines the advantages of the gradient method and the revised Newton method to improve the accuracy and speed of sparse recovery. The numerical simulation results show that the proposed algorithm has fast convergence and better accuracy compared with some existing similar methods. It is experimentally shown that HOSL0 algorithm is about two orders of magnitude faster than backpropagation algorithm under the same conditions.
关 键 词:压缩感知 稀疏重构 光滑l0范数 修正牛顿法 混合优化
分 类 号:TN911.7[电子电信—通信与信息系统]
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在链接到云南高校图书馆文献保障联盟下载...
云南高校图书馆联盟文献共享服务平台 版权所有©
您的IP:216.73.216.145