检索规则说明:AND代表“并且”;OR代表“或者”;NOT代表“不包含”;(注意必须大写,运算符两边需空一格)
检 索 范 例 :范例一: (K=图书馆学 OR K=情报学) AND A=范并思 范例二:J=计算机应用与软件 AND (U=C++ OR U=Basic) NOT M=Visual
机构地区:[1]广西大学计算机与电子信息学院,南宁530004
出 处:《小型微型计算机系统》2013年第11期2513-2517,共5页Journal of Chinese Computer Systems
基 金:国家自然科学基金项目(61063032)资助;广西自然科学基金项目(2012GXNSFAA053225)资助;广西教育厅科研基金项目(201012MS010)资助
摘 要:针对已有基于词聚类的话题检测方法存在的缺点,本文利用网络文档的半结构化特征提供的语义信息以及利用词在语义上下文的共现频率定义词之间的语义相似度,然后构建文档集的词共现语义网络,实现词之间语义关联的建模;据此提出相容语义块的概念,并通过对相容语义块的构建、分裂和约简来实现对话题的检测,进而提出一种基于相容语义块约简的网络话题检测方法.该方法获得的结果稳定,表现话题的词集简短而富有表达力,因而十分适合于网络话题检测,实验亦说明它的这些优点以及它的有效性和可行性.To overcome the shortcomings in the existing network topic detection approaches based on word clustering, this paper makes full use of the semantic information given by semi-structured documents and co-occurrence frequency in the word semantic con-text to define the semantic similarity degree between words, and then establish the word co-occurrence network for a given document set, thus modeling the semantic association between words. On these bases, a concept of tolerance semantic block is proposed, and by using the construction, abruption, and reduction of tolerance semantic blocks, a network topic detection approach is presented. The results obtained by this approach are relatively stable, and they are both brief and expressive word subsets. Therefore, the pro-posed approach is well applicable to network topic detection. Numerical experimentation also shows that the proposed approach really has these advantages and that it is effective and feasible for network topic detection.
分 类 号:TP391[自动化与计算机技术—计算机应用技术]
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在链接到云南高校图书馆文献保障联盟下载...
云南高校图书馆联盟文献共享服务平台 版权所有©
您的IP:216.73.216.229