检索规则说明:AND代表“并且”;OR代表“或者”;NOT代表“不包含”;(注意必须大写,运算符两边需空一格)
检 索 范 例 :范例一: (K=图书馆学 OR K=情报学) AND A=范并思 范例二:J=计算机应用与软件 AND (U=C++ OR U=Basic) NOT M=Visual
机构地区:[1]西北农林科技大学信息工程学院,西安712100 [2]甘肃畜牧工程职业技术学院,甘肃武威733006
出 处:《计算机工程与应用》2013年第21期152-155,共4页Computer Engineering and Applications
摘 要:为提高图像配准的速度和精度,对基于区域互信息配准算法进行了改进,运用了两层小波分解策略的配准方法,小波分解得到的最顶层图像采用粒子群优化全局寻优算法,利用搜索的结果作为下一层Powell寻优方法的起点,另外,对待配准图像应用形态学方法去除噪音。针对不同分解层的特点,采用不同的测度方法,得到的顶层图像采用改进后的区域互信息为相似性测度,而底层采用归一化互信息测度和相位一致性的相结合的方法,不仅提高了速度,还克服了图像间明暗对比的影响。实验结果表明,提出的配准算法对图像噪声有较高的鲁棒性,可达到亚像素精度,在配准速度上也有了很大的提高。To improve speed and precision of image registration method, region mutual information is improved and two layer decomposition strategy of wavelet decomposition is researched in this paper. The top floor which has less data adopts particle swarm optimization optimal registration method, and uses the search result as the starting point of PoweU optimization method in the next layer. Otherwise, mathematical morphology is yielded to remove noise. Aiming to different similarity measure for dif- ferent characteristics of decomposition, the top floor adopts the improved regional mutual information. The normalized mutual information is employed in the bottom floor while developing the phase congruency to extract characteristics. It not only improves speed, but also overcomes the effect of contrast between light and shade in pictures. Experimental results demonstrate that this new algorithm can offer a more robust and a sub-pixel precision, and the registration time is reduced.
分 类 号:TP391[自动化与计算机技术—计算机应用技术]
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在链接到云南高校图书馆文献保障联盟下载...
云南高校图书馆联盟文献共享服务平台 版权所有©
您的IP:216.73.216.122