基于Bayes时空理论探讨北京市结核病演化特征及生态影响因素分析  被引量:6

Exploration of Tuberculosis Evolution Characteristics and Ecological Factors Based on the Bayes Temporal-Spatial Theory

在线阅读下载全文

作  者:潘蕾[1] 贺晓新[2] 罗艳侠[1] 高琦[1] 吴立娟[1] 李霞[1] 郭秀花[1] 

机构地区:[1]首都医科大学公共卫生学院,100069 [2]北京结核病控制研究所

出  处:《中国卫生统计》2013年第5期658-660,664,共4页Chinese Journal of Health Statistics

基  金:国家科技部艾滋病和病毒性肝炎等重大传染病防治重大专项课题(2012ZX10005009-003);国家科技部973项目(2011CB505404);国家科技部重大专项中医药防治重大传染病的临床科研一体化技术平台课题(2009ZX10005-019)

摘  要:目的探讨北京市结核病时空演化特征与生态影响因素。方法基于Bayes时空理论,对2005-2009年北京市18区县结核病患病数据进行时空建模,以DIC值最小为标准找出最优模型,并研究协变量对模型的影响,结合ArcGis10.0软件绘制北京市18区县结核病时空危险度的分布图谱。结果全部模型中,含协变量的时空交互效应模型最优(DIC=818.834),生态分析的结果表明,除人均地区生产总值的升高会降低结核病危险度之外,每千人口拥有床位数、年平均相对湿度、年平均空气质量指数和年平均最高温度的升高会增高结核病患病危险度。结论 Bayes时空模型与生态学分析技术结合,能动态分析结核病的时空演化特征和生态影响因素,有利于发现重点疫区,为制定适宜的防治措施提供科学依据。Objective To explore tuberculosis temporal-spa- tial evolution characteristics and ecological factors. Methods The model is based on the tuberculosis data in Beijing 18 districts and counties between 2005 and 2009, find out the optimum model ( DIC minimum value), and by using ecology analysis technology, finding out association of tuberculosis risk and covariates, and combined with ArcGisl0. 0 show the distribution of space and time risk of tuberculosis in Beijing 18 districts and counties. Re- suits The optimization model is Bayes spatial-temporal interactive model (DIC = 818. 834). The results of ecological analysis shows that the risk of tuberculosis are significantly associated with the number of bed in hospital, annual average relative humidity, annual average air quality index and annu- al average temperature. Conclusion Combination of Bayes spatial-tem- poral model and ecological analysis will help for finding key areas of tuber- culosis.

关 键 词:结核病 相对危险度 Bayes理论时空模型 

分 类 号:R52[医药卫生—内科学]

 

参考文献:

正在载入数据...

 

二级参考文献:

正在载入数据...

 

耦合文献:

正在载入数据...

 

引证文献:

正在载入数据...

 

二级引证文献:

正在载入数据...

 

同被引文献:

正在载入数据...

 

相关期刊文献:

正在载入数据...

相关的主题
相关的作者对象
相关的机构对象