检索规则说明:AND代表“并且”;OR代表“或者”;NOT代表“不包含”;(注意必须大写,运算符两边需空一格)
检 索 范 例 :范例一: (K=图书馆学 OR K=情报学) AND A=范并思 范例二:J=计算机应用与软件 AND (U=C++ OR U=Basic) NOT M=Visual
作 者:薛永宏[1,2] 饶鹏[3] 樊士伟[2] 张寅生[2] 张涛[2] 安玮[1]
机构地区:[1]国防科技大学电子科学与工程学院,湖南长沙410073 [2]北京跟踪与通信技术研究所,北京100094 [3]中国科学院上海技术物理研究所,上海200083
出 处:《红外与毫米波学报》2013年第5期431-436,共6页Journal of Infrared and Millimeter Waves
基 金:国家自然科学基金(61002022)~~
摘 要:红外复杂背景中的弱小目标检测问题可看作是马尔可夫随机场理论框架下红外图像中背景与目标的二元分类标记问题.基于马尔可夫随机场后验概率模型,提出利用先验的目标信杂比信息和图像局部统计特性构建观测图像后验概率模型的方法,并采用经典ICM(Iterated conditional mode)方法对图像最优标记结果进行估计.仿真试验结果表明,算法在保证目标标记结果准确率的同时,有效降低了背景的误标记概率;且由于采用局部统计特性进行建模,算法有效降低了模型参数与标记结果间的关联性,提高了最优标记估计的收敛速度.Dim small target detection problem in infrared complex background was formulated as a binary classification problem of background and target in the theoretical framework of Markov random field (MRF). Based on the posterior probability model of MRF, a method using prior information of target SCR ( signal-to-clutter ratio) and local statistic characteristic of infrared image was proposed to construct the posterior probability model of observed image. The classic iterated conditional mode (ICM) was used to estimate the optimal labeling image. Simulation and experimental results show that the proposed algorithm effectively reduces the false labeling probability of background, while maintaining a high probability of correct labeling of target. In addition, for using image' s local statistic characteristic in modeling, the proposed algorithm also reduces the correlation between labeled results and model parameters which contributes to im- provement on the convergence speed of estimating the optimal labeling.
关 键 词:马尔可夫随机场 局部统计特性 弱小目标检测 标记
分 类 号:TP391.4[自动化与计算机技术—计算机应用技术]
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在链接到云南高校图书馆文献保障联盟下载...
云南高校图书馆联盟文献共享服务平台 版权所有©
您的IP:216.73.216.173