Further investigations of the low-lying electronic states of AsO^+ radical  

Further investigations of the low-lying electronic states of AsO^+ radical

在线阅读下载全文

作  者:朱遵略 乔浩 郎建华 孙金锋 

机构地区:[1]College of Physics and Electronic Engineering,Henan Normal University

出  处:《Chinese Physics B》2013年第10期226-233,共8页中国物理B(英文版)

基  金:Project supported by the National Natural Science Foundation of China(Grant Nos.11274097 and 61275132);the Natural Science Foundation of Henan Province,China(Grant No.2008A140008)

摘  要:The high level quantum chemistry ab inito multi-reference configuration interaction (MRCI) method with large V5Z basis set is used to calculate the spectroscopic properties of the 15 A-S electronic states (X1∑+, A I П, 1 △, 1 ∑, 3∑+, 3П, 3△, 3△ , 5∑+, 5П, 5△, 1П (II), ofAsO+ radical correlated to the dissociation limit As+(3pg) + O(3pg) and As+(IDg) + O(1Dg). In order to obtain better potential curves and more accurate spectroscopic properties, the Davidson modification is taken into account. With the potential energy curves (PECs) determined here, vibrational levels G(v) and inertial rotation constants Bu are computed for all the bound electronic states when the rotational quantum number J equals zero (J = 0). Except for the states X1∑+, A1П , it is the first time that the multi-reference configuration calculation has been used on the 13 A-S electronic states of the AsO+ radical. The potential energy curves of all the A-S electronic states are depicted according to the avoided crossing rule of the same symmetry. Spin-orbit coupling effect (SOC) is introduced into the states X1 ∑+, A1 П, 3П to consider its effects on the spectroscopic properties. Transition dipole moments (TDMs) from A1П 1, 3 П1 states to the ground state X1∑0+ are predicted as well.The high level quantum chemistry ab inito multi-reference configuration interaction (MRCI) method with large V5Z basis set is used to calculate the spectroscopic properties of the 15 A-S electronic states (X1∑+, A I П, 1 △, 1 ∑, 3∑+, 3П, 3△, 3△ , 5∑+, 5П, 5△, 1П (II), ofAsO+ radical correlated to the dissociation limit As+(3pg) + O(3pg) and As+(IDg) + O(1Dg). In order to obtain better potential curves and more accurate spectroscopic properties, the Davidson modification is taken into account. With the potential energy curves (PECs) determined here, vibrational levels G(v) and inertial rotation constants Bu are computed for all the bound electronic states when the rotational quantum number J equals zero (J = 0). Except for the states X1∑+, A1П , it is the first time that the multi-reference configuration calculation has been used on the 13 A-S electronic states of the AsO+ radical. The potential energy curves of all the A-S electronic states are depicted according to the avoided crossing rule of the same symmetry. Spin-orbit coupling effect (SOC) is introduced into the states X1 ∑+, A1 П, 3П to consider its effects on the spectroscopic properties. Transition dipole moments (TDMs) from A1П 1, 3 П1 states to the ground state X1∑0+ are predicted as well.

关 键 词:MRCI (+Q) spin-orbit coupling effect (SOC) potential energy curves (PECs) spectroscopic constants 

分 类 号:O561.4[理学—原子与分子物理]

 

参考文献:

正在载入数据...

 

二级参考文献:

正在载入数据...

 

耦合文献:

正在载入数据...

 

引证文献:

正在载入数据...

 

二级引证文献:

正在载入数据...

 

同被引文献:

正在载入数据...

 

相关期刊文献:

正在载入数据...

相关的主题
相关的作者对象
相关的机构对象