越库作业调度模型与算法研究  被引量:3

Operational scheduling model and algorithms of cross-docking

在线阅读下载全文

作  者:毛道晓[1] 徐克林[1] 杨璐琦[1] 

机构地区:[1]同济大学机械与能源工程学院,上海201804

出  处:《广西大学学报(自然科学版)》2013年第5期1079-1085,共7页Journal of Guangxi University(Natural Science Edition)

基  金:国家自然科学基金资助项目(71071115)

摘  要:针对暂存区容量有限的越库中心的作业调度问题,以暂存成本、额外搬运成本和换车成本总和最小化为目标,建立数学模型。构建分支定界算法对问题进行精确求解;结合贪婪算法和遗传算法构建混合启发式算法对问题进行近似求解。大、小规模情形下的数值实验结果表明:分支定界算法可以有效求得小规模问题的精确解,但随着问题规模的增大,难以在较短时间内求得精确解;混合启发式算法在小规模情形下与分支定界算法的求解误差最小为0,最大为0.58%;大规模情形下,在给定1 800 s内,混合启发式算法的求解质量均优于分支定界算法,两者差距最大为7.16%。这表明所构建的混合启发式算法是有效的。To study the operational scheduling problem of a cross-docking center with finite tempora- ry storage, a mathematical model was presented with the objective to minimize temporary storage cost, additional handling cost and truck replacement cost. Both branch and bound algorithm (B&B) and a hybrid meta-heuristic of greedy algorithm and genetic algorithm were proposed to solve the problem accurately or approximately. Numerical experiments under small and big scale situations show that B&B can obtain optimal solution for small scale problems while it is difficult to obtain opti- mal solution in a short time for large ones; the minimum and the maximum of result error between hybrid meta-heuristic and B&B are 0 and 0. 58% respectively under small scale situation, while un- der big scale situation the calculating results of hybrid meta-heuristic is better than that of B&B with- in the given 1 800 seconds and the biggest gap between them run up to 7. 16%. This indicates that the proposed hybrid meta-heuristic is effective.

关 键 词:越库 调度 分支定界算法 混合启发式算法 

分 类 号:TP301[自动化与计算机技术—计算机系统结构] F253[自动化与计算机技术—计算机科学与技术]

 

参考文献:

正在载入数据...

 

二级参考文献:

正在载入数据...

 

耦合文献:

正在载入数据...

 

引证文献:

正在载入数据...

 

二级引证文献:

正在载入数据...

 

同被引文献:

正在载入数据...

 

相关期刊文献:

正在载入数据...

相关的主题
相关的作者对象
相关的机构对象