检索规则说明:AND代表“并且”;OR代表“或者”;NOT代表“不包含”;(注意必须大写,运算符两边需空一格)
检 索 范 例 :范例一: (K=图书馆学 OR K=情报学) AND A=范并思 范例二:J=计算机应用与软件 AND (U=C++ OR U=Basic) NOT M=Visual
机构地区:[1]同济大学测绘与地理信息学院,上海200092
出 处:《同济大学学报(自然科学版)》2013年第11期1738-1743,共6页Journal of Tongji University:Natural Science
基 金:国家自然科学基金(40971241)
摘 要:提出基于小波技术的散乱点云自适应压缩算法.利用快速成型理论中的切片技术,将三维空间点云数据降为二维平面点云数据,并对排序后的点云数据进行小波变换,利用小波系数峰值,自适应地保留能够反映目标特征和细节信息的点,实现散乱点云的快速压缩.借助于实验,验证切片的分割厚度选为采样间隔的2~3倍时,可以实现快速高质量的散乱点云压缩.结果表明:算法在特征保留上具有明显的优势,能够最大限度地保留特征信息,压缩效果更为理想,且无需设置阈值,同时还具有自适应的特点,有助于实现压缩的自动化.An adaptive reduction algorithm of scattered point clouds based on wavelet is proposed, in which the 3D point clouds are converted into point sets on the 2D plane firstly by using the slicing technology in rapid prototyping theory, and then the wavelet coefficients of sorted point clouds data after the wavelet transform can be obtained whose peaks represent the points to be reserved. According to the experiments, the rapid and high-quality reduction of scattered point can be performed while the slice thickness is chosen as 2 or 3 times of the sampling interval. The result indicates that this algorithm has obvious advantages in terms of the feature preserving. It can preserve the feature information ultimately, thus the reduction results are more ideal. Due to peaks of wavelet coefficient can adaptively identify the objects' details and features, this algorithm needlessly set a threshold, which explains the adaptability of the algorithm andalso contributes to realizing the automatic reduction.
分 类 号:P234.4[天文地球—摄影测量与遥感]
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在链接到云南高校图书馆文献保障联盟下载...
云南高校图书馆联盟文献共享服务平台 版权所有©
您的IP:216.73.216.112