机构地区:[1]National Engineering Laboratory for Hydrometallurgical Cleaner Production Technology,Institute of Process Engineering, Chinese Academy of Sciences, Beijing 100190, China [2]Laboratory of Nuclear Analysis Techniques, Institute of High Energy Physics, Chinese Academy of Sciences, Beijing 100049, China [3]Key Laboratory of Molecular Nanostructure and Nanotechnology, Beijing National Laboratoryfor Molecular Sciences, Institute of Chemistry, Chinese Academy of Sciences, Beijing 100190, China
出 处:《Chinese Journal of Chemistry》2013年第10期1257-1262,共6页中国化学(英文版)
基 金:Acknowledgement This work was financially supported by the Major Program of the Natural Science Foundation of China (Grant No. 51090380), the National Science Foundation for Distinguished Young Scholars of China (Grant No. 51125018), the Knowledge Innovation Program of the Chinese Academy of Sciences (KGCX2-YW-214) and the special funds of "Mountain Tai Scholar" construction project. The computing platform was supported by the Computer Facility for Theoretical and Computational Chemistry, Institute of Chemistry (CFCC), Chinese Academy of Sciences (CAS).
摘 要:TiO2 is a latent anode material for rechargeable lithium batteries. Our simulation models, basing lepidocrocite and 2-MnO2 type TiO2 were investigated by density functional theory (DFT). The key issues are focused on the lithium insertion sites, electronic structures, and the conducting paths of Li+ ions. Our calculated data indicate the calculated voltage of 2-MnO2 type TiO2 is higher than that of lepidocrocite type TiO2. The Li+ ion migration energy barrier of lepidocroeite type YiO2 along the [1 0 0] direction (0.45 eV) is lower than that of along the [110] direction (0.57 eV). The energy barriers of 2-MnO2 type TiO2 to move a Li+ ion among the adjacent embedded sites (16c or 8a sites) is 0.68 eV.TiO2 is a latent anode material for rechargeable lithium batteries. Our simulation models, basing lepidocrocite and 2-MnO2 type TiO2 were investigated by density functional theory (DFT). The key issues are focused on the lithium insertion sites, electronic structures, and the conducting paths of Li+ ions. Our calculated data indicate the calculated voltage of 2-MnO2 type TiO2 is higher than that of lepidocrocite type TiO2. The Li+ ion migration energy barrier of lepidocroeite type YiO2 along the [1 0 0] direction (0.45 eV) is lower than that of along the [110] direction (0.57 eV). The energy barriers of 2-MnO2 type TiO2 to move a Li+ ion among the adjacent embedded sites (16c or 8a sites) is 0.68 eV.
关 键 词:titanium dioxide lithium insertion DIFFUSION density functional theory transition state
分 类 号:TP277[自动化与计算机技术—检测技术与自动化装置] TQ137.12[自动化与计算机技术—控制科学与工程]
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...