检索规则说明:AND代表“并且”;OR代表“或者”;NOT代表“不包含”;(注意必须大写,运算符两边需空一格)
检 索 范 例 :范例一: (K=图书馆学 OR K=情报学) AND A=范并思 范例二:J=计算机应用与软件 AND (U=C++ OR U=Basic) NOT M=Visual
机构地区:[1]哈尔滨工业大学计算机科学与技术学院,哈尔滨150001
出 处:《智能计算机与应用》2013年第5期24-27,30,共5页Intelligent Computer and Applications
基 金:国家高技术研究发展计划(863)(2011AA01A207);国家自然科学基金(61073130)
摘 要:随着互联网爆炸式的发展和普及,网络信息已经成为了一种宝贵的信息数据资源。海量的网络数据使得数据分析与挖掘系统进入了一个新时代,越来越多的网络应用系统需要对来自不同数据源的结构化数据进行抽取、挖掘和整合。然而,由于网页文档的半结构化性质,网页上呈现的数据往往不能被机器自动地抽取和理解,因此,网络信息抽取的研究目标在于提取网页的结构化数据。互联网数据的海量规模与高度异构,为网络信息抽取带来了巨大的挑战。分析和总结了近年来网络信息抽取相关的研究与工作,剖析了各个工作的优势和局限,并进一步作了综合的分类与比较。The World Wide Web has become an important resource of information due to its explosive growth and spread in the past two decades. The tremendous amount of web data has opened a new era for data analysis and mining systems. More and more web applications need to extract, mine, and integrate data from enormous data sources. However, due to the semi - structure characteristic of web pages, web data exhibited on web pages is not directly consumable by machines. Web information extraction aims at extracting structured data from web pages, which is a very challenging problem clue to the large - scale and highly - heterogeneous characteristic of web data. This paper introduces the state - of - the - art web information extraction studies, analyzes the advantages and limitations of each method, and conducts categorization and comparison of existing approaches.
分 类 号:TP391[自动化与计算机技术—计算机应用技术]
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在链接到云南高校图书馆文献保障联盟下载...
云南高校图书馆联盟文献共享服务平台 版权所有©
您的IP:216.73.216.229