检索规则说明:AND代表“并且”;OR代表“或者”;NOT代表“不包含”;(注意必须大写,运算符两边需空一格)
检 索 范 例 :范例一: (K=图书馆学 OR K=情报学) AND A=范并思 范例二:J=计算机应用与软件 AND (U=C++ OR U=Basic) NOT M=Visual
机构地区:[1]西安交通大学数学与统计学院,西安710049 [2]西安交通大学能源与动力工程学院,西安710049 [3]东华大学理学院,上海201600
出 处:《中国科学:数学》2013年第10期965-1021,共57页Scientia Sinica:Mathematica
基 金:国家自然科学基金(批准号:11201369);国家重点基础研究发展计划(批准号:2011CB706505);中央高校基本科研业务费专项资金资助项目
摘 要:本文给出固壁边界上(即一个二维流形上)的流体速度梯度和压力的二阶偏微分方程,从而也给出边界上法向应力,以及流体中运动物体所受的阻力和升力的计算公式.本方法的创新在于边界上法向速度梯度不是通过在边界层内速度梯度的数值微分达到,而是通过它与其他变量一起作为一组偏微分方程的解而得到,证明边界层方程组的适定性问题,并且给出解关于边界形状的Gteaux导数所满足的偏微分方程.本文将本方法应用于飞机外形的形状最优控制,给出阻力泛函关于形状第一变分的可计算形式.数值例子表明,用本方法得到的阻力精度比通用程序得到要高.In this paper, the second order partial differential equations of the velocity gradient and pressure for the flow on a solid boundary (two-dimensional manifold) are proposed. Thus, the normal stress on the boundary, the drag and lift of the moving body in the flow are obtained. The key innovation of our method is that the velocity gradient on the boundary which must be computed in the shape optimization is obtained not from numerical difference of velocity at the boundary layer, but from solving new boundary layer equations which are proposed by us. Moreover, we prove the posedness of boundary layer equations and give the equations satisfied by the GEteaux derivative of the solutions to boundary layer equations with respond to the shape. At last, we give an application, which applies our method to the shape optimal control of the airplane, and the calculated form for the first variation of the drag functional to the shape. Numerical example shows the accuracy of drag obtained by using our method higher than by standard software.
关 键 词:边界层 阻力 形状优化控制 Navier—Stokes方程
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在链接到云南高校图书馆文献保障联盟下载...
云南高校图书馆联盟文献共享服务平台 版权所有©
您的IP:18.188.224.69