Existence of heteroclinic orbits in a novel three-order dynamical system  被引量:1

Existence of heteroclinic orbits in a novel three-order dynamical system

在线阅读下载全文

作  者:胡瑀 闵乐泉 甄平 

机构地区:[1]Beijing University of Science and Technology

出  处:《Chinese Physics B》2013年第11期232-238,共7页中国物理B(英文版)

基  金:Project supported by the National Natural Science Foundation of China(Grant Nos.61170037 and 61074192)

摘  要:In this paper, we design a novel three-order autonomous system. Numerical simulations reveal the complex chaotic behaviors of the system. By applying the undetermined coefficient method, we find a heteroclinic orbit in the system. As a result, the Si'lnikov criterion along with some other given conditions guarantees that the system has both Smale horseshoes and chaos of horseshoe type.In this paper, we design a novel three-order autonomous system. Numerical simulations reveal the complex chaotic behaviors of the system. By applying the undetermined coefficient method, we find a heteroclinic orbit in the system. As a result, the Si'lnikov criterion along with some other given conditions guarantees that the system has both Smale horseshoes and chaos of horseshoe type.

关 键 词:novel chaotic system heteroclinic orbit Si'lnikov criterion undetermined coefticient method 

分 类 号:O415.5[理学—理论物理]

 

参考文献:

正在载入数据...

 

二级参考文献:

正在载入数据...

 

耦合文献:

正在载入数据...

 

引证文献:

正在载入数据...

 

二级引证文献:

正在载入数据...

 

同被引文献:

正在载入数据...

 

相关期刊文献:

正在载入数据...

相关的主题
相关的作者对象
相关的机构对象