Exact solutions for the flow of Casson fluid over a stretching surface with transpiration and heat transfer effects  

Exact solutions for the flow of Casson fluid over a stretching surface with transpiration and heat transfer effects

在线阅读下载全文

作  者:Swati Mukhopadhyay Krishnendu Bhattacharyya Tasawar Hayat 

机构地区:[1]Department of Mathematics, The University of Burdwan [2]Department of Mathematics, Quaid-i-Azam University 45320 [3]Department of Mathematics, Faculty of Science, King Abdulziz University

出  处:《Chinese Physics B》2013年第11期356-361,共6页中国物理B(英文版)

基  金:Project supported by UGC (New Delhi,India) through the Special Assistance Programme DSA Phase 1

摘  要:The effects of transpiration on forced convection boundary layer non-Newtonian fluid flow and heat transfer toward a linearly stretching surface are reported. The flow is caused solely by the stretching of the sheet in its own plane with a velocity varying linearly with the distance from a fixed point. The constitutive relationship for the Casson fluid is used. The governing partial differential equations corresponding to the momentum and energy equations are converted into non-linear ordinary differential equations by using similarity transformations. Exact solutions of the resulting ordinary differential equations are obtained. The effect of increasing Casson parameter, i.e., with decreasing yield stress (the fluid behaves as a Newtonian fluid as the Casson parameter becomes large), is to suppress the velocity field. However, the temperature is enhanced as the Casson parameter increases. It is observed that the effect of transpiration is to decrease the fluid velocity as well as the temperature. The skin-friction coefficient is found to increase as the transpiration parameter increases.The effects of transpiration on forced convection boundary layer non-Newtonian fluid flow and heat transfer toward a linearly stretching surface are reported. The flow is caused solely by the stretching of the sheet in its own plane with a velocity varying linearly with the distance from a fixed point. The constitutive relationship for the Casson fluid is used. The governing partial differential equations corresponding to the momentum and energy equations are converted into non-linear ordinary differential equations by using similarity transformations. Exact solutions of the resulting ordinary differential equations are obtained. The effect of increasing Casson parameter, i.e., with decreasing yield stress (the fluid behaves as a Newtonian fluid as the Casson parameter becomes large), is to suppress the velocity field. However, the temperature is enhanced as the Casson parameter increases. It is observed that the effect of transpiration is to decrease the fluid velocity as well as the temperature. The skin-friction coefficient is found to increase as the transpiration parameter increases.

关 键 词:stretching surface TRANSPIRATION Casson fluid heat transfer 

分 类 号:O373[理学—流体力学]

 

参考文献:

正在载入数据...

 

二级参考文献:

正在载入数据...

 

耦合文献:

正在载入数据...

 

引证文献:

正在载入数据...

 

二级引证文献:

正在载入数据...

 

同被引文献:

正在载入数据...

 

相关期刊文献:

正在载入数据...

相关的主题
相关的作者对象
相关的机构对象