Numerical simulation of hydro-elastic problems with smoothed particle hydrodynamics method  被引量:8

Numerical simulation of hydro-elastic problems with smoothed particle hydrodynamics method

在线阅读下载全文

作  者:刘谋斌 邵家儒 李慧琦 

机构地区:[1]Institute of Mechanics,Chinese Academy of Sciences [2]School of Information and Electronics,Beijing Institute of Technology

出  处:《Journal of Hydrodynamics》2013年第5期673-682,共10页水动力学研究与进展B辑(英文版)

基  金:Project supported by the National Natural Science Foundation of China(Grant Nos.11172306,11232012 and81271650);the New Century Excellent Talents(Grant No.NCET-10-0041);the 100 Talents Programme of the Chinese Academy of Sciences

摘  要:Violent free surface flows with strong fluid-solid interactions can produce a tremendous pressure load on structures, resu- lting in elastic and even plastic deformations. Modeling hydro-elastic problems with structure deformations and a free surfaee breakup is difficult by using routine numerical methods. This paper presents an improved Smoothed Particle Hydrodynamics (SPH) method for modeling hydro-elastic problems. The fluid particles are used to model the free surface flows governed by Navier-Stokes equations, and the solid particles are used to model the dynamic movement and deformation of the elastic solid objects. The improved SPH method employs a Kernel Gradient Correction (KGC) technique to improve the computational accuracy and a Fluid-Solid Interface Treatment (FSIT) algorithm with the interface fluid and solid particles being treated as the virtual particles against their counterparts and a soft repulsive force to prevent the penetration and a corrective density approximation scheme to remove the numerical oscillations. Three typical numerical examples are simulated, including a head-on collision of two rubber rings, the dam break with an elastic gate and the water impact onto a forefront elastic plate. The obtained SPH results agree well with experimental observations and numerical results from other sources.Violent free surface flows with strong fluid-solid interactions can produce a tremendous pressure load on structures, resu- lting in elastic and even plastic deformations. Modeling hydro-elastic problems with structure deformations and a free surfaee breakup is difficult by using routine numerical methods. This paper presents an improved Smoothed Particle Hydrodynamics (SPH) method for modeling hydro-elastic problems. The fluid particles are used to model the free surface flows governed by Navier-Stokes equations, and the solid particles are used to model the dynamic movement and deformation of the elastic solid objects. The improved SPH method employs a Kernel Gradient Correction (KGC) technique to improve the computational accuracy and a Fluid-Solid Interface Treatment (FSIT) algorithm with the interface fluid and solid particles being treated as the virtual particles against their counterparts and a soft repulsive force to prevent the penetration and a corrective density approximation scheme to remove the numerical oscillations. Three typical numerical examples are simulated, including a head-on collision of two rubber rings, the dam break with an elastic gate and the water impact onto a forefront elastic plate. The obtained SPH results agree well with experimental observations and numerical results from other sources.

关 键 词:Smoothed Particle Hydrodynamics (SPH) hydro-elasticity Fluid-Structure Interaction (FSI) artificial stress 

分 类 号:O35[理学—流体力学] O242.1[理学—力学]

 

参考文献:

正在载入数据...

 

二级参考文献:

正在载入数据...

 

耦合文献:

正在载入数据...

 

引证文献:

正在载入数据...

 

二级引证文献:

正在载入数据...

 

同被引文献:

正在载入数据...

 

相关期刊文献:

正在载入数据...

相关的主题
相关的作者对象
相关的机构对象