Mild Solution of Stochastic Equations with Levy Jumps: Existence, Uniqueness, Regularity and Stability  被引量:1

Mild Solution of Stochastic Equations with Levy Jumps: Existence, Uniqueness, Regularity and Stability

在线阅读下载全文

作  者:ZHOU Guoli GUO Boling HOU Zhenting 

机构地区:[1]College of Mathematics and Statistics, Chong Qing University, Chong Qing 401331,China. [2]Institute of Applied Physics and Computational Mathematics, P.O. Box 8009, Beijing 100088, China. [3]College of Mathematics and Statistics, Central South University, Changsha 410075, China.

出  处:《Journal of Partial Differential Equations》2013年第3期251-288,共38页偏微分方程(英文版)

摘  要:The existence and uniqueness of mild solution to stochastic equations with jumps are established, a stochastic Fubini theorem and a type of Burkholder-Davis- Gundy inequality are proved, and the two formulas are used to study the regularity property of the mild solution of a general stochastic evolution equation perturbed by Levy process. Then the authors prove the moment exponential stability, almost sure exponential stability and comparison principles of the mild solution. As applications, the stability and comparison principles of stochastic heat equation with Levy jump are given.

关 键 词:Stochastic evolution equation Levy processes mild solution stability. 

分 类 号:O211[理学—概率论与数理统计]

 

参考文献:

正在载入数据...

 

二级参考文献:

正在载入数据...

 

耦合文献:

正在载入数据...

 

引证文献:

正在载入数据...

 

二级引证文献:

正在载入数据...

 

同被引文献:

正在载入数据...

 

相关期刊文献:

正在载入数据...

相关的主题
相关的作者对象
相关的机构对象