MMSE准则下近似最优MIMO分组并行检测算法  被引量:3

A Near- Optimal Parallel Detection Algorithm Based on Channel Partition and MMSE Criterion

在线阅读下载全文

作  者:芮国胜[1] 张海波[1] 田文飚[1] 张洋[1] 邓兵[2] 李廷军[2] 

机构地区:[1]海军航空工程学院信号与信息处理山东省重点实验室,山东烟台264001 [2]海军航空工程学院电子信息工程系,山东烟台264001

出  处:《电子学报》2013年第10期1881-1887,共7页Acta Electronica Sinica

基  金:"泰山学者"建设工程专项经费资助;国家自然科学基金(No.60902054);中国博士后科学基金(No.20090460114;No.201003758)

摘  要:在采用多天线高阶QAM的MIMO通信系统中,现有基于信道分组并行检测算法虽然接近最优检测性能但以牺牲计算效率为代价.针对这一问题,本文提出一种MMSE准则下基于信道分组的并行检测算法,不但有效降低计算复杂度,而且仍保证检测性能.该算法采用MMSE准则下格归约算法改进分组后条件较好子信道矩阵特性,并在消除参考信号基础上利用改进的子信道矩阵对剩余信号以非线性方式进行检测.仿真结果表明:对4@4和6@6MIMO系统,该算法检测性能达到最优,对于8@8 MIMO系统,比最优算法所需信噪比提高约1dB.复杂度分析表明:相比现有信道分组检测算法,相同检测性能下该算法在6@6 M IMO系统中复杂度降低90%以上,在8@8 MIMO系统中复杂度降低98%以上.For the MIMO systems with a large number of antennas and a large QAM constellation ,the existing parallel de-tection algorithms ,which are based on channel partition ,can approach the optimal detection performance but the computational effi-ciency is sacrificed .In order to solve the problem ,a new parallel detection algorithm based on channel partition is proposed .This al-gorithm can not only efficiently reduce the computational complexity but also guarantee the detection performance .After channel partition ,this algorithm firstly employs the lattice reduction algorithm under the MMSE criterion to improve the properties of the sub-channels;and then the remaining signals are detected with a nonlinear method .The simulation results show that the proposed al-gorithm achieves the near-optimal detection performance for the 4*4 and 6*6 MIMO systems and its performance decreases 1dB for the 8*8 MIMO systems compared to the optimal performance .Complexity analysis shows that its complexity is reduced 90% or above for 6*6 MIMO systems and 98% or above for 8*8 MIMO systems at the same BER .

关 键 词:多输入多输出系统 最小均方误差 信道分组 并行检测 格归约 正交幅度调制(QAM) 

分 类 号:TN929[电子电信—通信与信息系统]

 

参考文献:

正在载入数据...

 

二级参考文献:

正在载入数据...

 

耦合文献:

正在载入数据...

 

引证文献:

正在载入数据...

 

二级引证文献:

正在载入数据...

 

同被引文献:

正在载入数据...

 

相关期刊文献:

正在载入数据...

相关的主题
相关的作者对象
相关的机构对象