检索规则说明:AND代表“并且”;OR代表“或者”;NOT代表“不包含”;(注意必须大写,运算符两边需空一格)
检 索 范 例 :范例一: (K=图书馆学 OR K=情报学) AND A=范并思 范例二:J=计算机应用与软件 AND (U=C++ OR U=Basic) NOT M=Visual
机构地区:[1]兰州交通大学经济管理学院,甘肃兰州730070
出 处:《兰州交通大学学报》2013年第5期68-70,共3页Journal of Lanzhou Jiaotong University
摘 要:随着舞弊手段日趋隐蔽,需要建立一个快速有效的识别模型。本文选取了24个相关指标作为解释变量,选取了72家财务报告舞弊上市公司作为样本。首先建立Logistic回归模型,模型的判断率达到了71.7%。然后将Logistic回归得到的7个解释变量,用运到BP神经网络模型之中,使判别率达到87.1%,高于出了16%。说明BP神经网络的总体识别率更高。With the increasing concealment for fraud ways, a rapid and efficient recognition model need to be established. In this paper,24 relative indicators are selected as explanatory variables;72 China's list compa- nies which had financial reporting fraud are selected as samples. Firstly, a logistic regression model is built, and the recognition rate of this model is 71.7 %. Seven explanatory variables from logistic regression is applied to BP network model. The recognition rae get to 87.1% ,which is 16% higher than the logistic regression model. It indicates that the general recognition rate of BP neural network model is better.
关 键 词:财务报告 舞弊BP神经网络 LOGISTIC回归
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在链接到云南高校图书馆文献保障联盟下载...
云南高校图书馆联盟文献共享服务平台 版权所有©
您的IP:216.73.216.7