检索规则说明:AND代表“并且”;OR代表“或者”;NOT代表“不包含”;(注意必须大写,运算符两边需空一格)
检 索 范 例 :范例一: (K=图书馆学 OR K=情报学) AND A=范并思 范例二:J=计算机应用与软件 AND (U=C++ OR U=Basic) NOT M=Visual
作 者:陈红艳[1] 赵庚星[1] 李希灿[2] 王向锋[3] 李玉玲
机构地区:[1]土肥资源高效利用国家工程实验室/山东农业大学资源与环境学院,山东泰安271018 [2]山东农业大学信息科学与工程学院,山东泰安271018 [3]垦利县国土资源局,山东垦利257500 [4]齐河县农业局,山东齐河251100
出 处:《应用生态学报》2013年第11期3185-3191,共7页Chinese Journal of Applied Ecology
基 金:国家自然科学基金项目(41271235);国家科技计划项目(2013BAD05B06;2011BAD21B0601);高校博士点基金项目(20103702110010);山东省自主创新专项(2012CX90202)资助
摘 要:以山东齐河县为研究区,实地采集土壤样本,在土样高光谱测试并进行一阶导数变换的基础上,先运用离散小波变换(DWT)对土壤光谱去噪降维,然后采用遗传算法(GA)筛选土壤碱解氮定量估测模型的参与变量,最后应用偏最小二乘(PLS)回归构建土壤碱解氮含量的估测模型.结果表明:离散小波变换结合遗传算法和偏最小二乘法(DWT—GA.PLS)用于土壤碱解氮含量定量估测,不仅可压缩光谱变量、减少模型参与变量,而且可改善模型估测准确度;较之于采用土壤全谱,小波离散分解1~2层低频系数构建的模型在参与变量大幅减少的情况下,取得更准确或与之相当的预测结果,其中,基于第2层小波低频系数采用GA筛选变量构建的PLS模型的预测效果表现最好,预测R2达到0.85,RMSE为8.11mg·kg-1,RPD为2.53.说明DwT—GA-PLS用于土壤碱解氮含量高光谱定量估测的有效性.Taking the Qihe County in Shandong Province of East China as the study area, soil sam- ples were collected from the field, and based on the hyperspectral reflectance measurement of the soil samples and the transformation with the first deviation, the spectra were denoised and com- pressed by discrete wavelet transform (DWT) , the variables for the soil alkali hydrolysable nitrogen quantitative estimation models were selected by genetic algorithms (GA), and the estimation mod- els for the soil alkali hydrolysable nitrogen content were built by using partial least squares (PLS) regression. The discrete wavelet transform and genetic algorithm in combining with partial least squares (DWT-GA-PLS) could not only compress the spectrum variables and reduce the model var- iables, but also improve the quantitative estimation accuracy of soil alkali hydrolysable nitrogen con- tent. Based on the 1-2 levels low frequency coefficients of discrete wavelet transform, and under the condition of large scale decrement of spectrumvariables, the calibration models could achieve the higher or the same prediction accuracy as the soil full spectra. The model based on the second level low frequency coefficients had the highest precision, with the model predicting R2being 0.85,the RMSE being 8. 11 mg. kg-1 , and RPD being 2.53, indicating the effectiveness of DWT-GA- PLS method in estimating soil alkali hydrolysable nitrogen content.
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在链接到云南高校图书馆文献保障联盟下载...
云南高校图书馆联盟文献共享服务平台 版权所有©
您的IP:216.73.216.44