Continental subduction channel processes: Plate interface interaction during continental collision  被引量:59

Continental subduction channel processes: Plate interface interaction during continental collision

在线阅读下载全文

作  者:ZHENG YongFei ZHAO ZiFu CHEN YiXiang 

机构地区:[1]CAS Key Laboratory of Crust-Mantle Materials and Environments, School of Earth and Space Sciences,University of Science and Technology of China [2]Hefei 230026, China

出  处:《Chinese Science Bulletin》2013年第35期4371-4377,共7页

基  金:supported by the National Natural Science Foundation of China(41221062);the Ministry of Science and Technology of China(2009CB825004)

摘  要:The study of subduction-zone processes is a key to development of the plate tectonic theory.Plate interface interaction is a basic mechanism for the mass and energy exchange between Earth’s surface and interior.By developing the subduction channel model into continental collision orogens,insights are provided into tectonic processes during continental subduction and its products.The continental crust,composed of felsic to mafic rocks,is detached at different depths from subducting continental lithosphere and then migrates into continental subduction channel.Part of the subcontinental lithospheric mantle wedge,composed of peridotite,is offscrapped from its bottom.The crustal and mantle fragments of different sizes are transported downwards and upwards inside subduction channels by the corner flow,resulting in varying extents of metamorphism,with heterogeneous deformation and local anatexis.All these metamorphic rocks can be viewed as tectonic melanges due to mechanical mixing of crust-and mantle-derived rocks in the subduction channels,resulting in different types of metamorphic rocks now exposed in the same orogens.The crust-mantle interaction in the continental subduction channel is realized by reaction of the overlying ancient subcontinental lithospheric mantle wedge peridotite with aqueous fluid and hydrous melt derived from partial melting of subducted continental basement granite and cover sediment.The nature of premetamorphic protoliths dictates the type of collisional orogens,the size of ultrahigh-pressure metamorphic terranes and the duration of ultrahigh-pressure metamorphism.The study of subduction-zone processes is a key to development of the plate tectonic theory. Plate interface interaction is a basic mechanism for the mass and energy exchange between Earth's surface and interior. By developing the subduction channel model into continental collision orogens, insights are provided into tectonic processes during continental subduction and its products. The continental crust, composed of felsic to mafic rocks, is detached at different depths from subducting continental lithosphere and then migrates into continental subduction channel. Part of the subcontinental lithospheric mantle wedge, composed of perido- tile, is offscrapped from its bottom. The crustal and mantle fragments of different sizes are transported downwards and upwards inside subduction channels by the corner flow, resulting in varying extents of metamorphism, with heterogeneous deformation and local anatexis. All these metamorphic rocks can be viewed as tectonic melanges due to mechanical mixing of crust- and man- lie-derived rocks in the subduction channels, resulting in different types of metamorphic rocks now exposed in the same orogens. The crust-mantle interaction in the continental subduction channel is realized by reaction of the overlying ancient subcontinental lithospheric mantle wedge peridotite with aqueous fluid and hydrous melt derived from partial melting of subducted continental basement granite and cover sediment. The nature of premetamorphic protoliths dictates the type of collisional orogens, the size of ultrahigh-pressure metamorphic terranes and the duration of ultrahigh-pressure metamorphism.

关 键 词:大陆俯冲 碰撞过程 界面 中板 大陆碰撞造山带 大陆岩石圈 板块构造理论 壳幔相互作用 

分 类 号:P542[天文地球—构造地质学]

 

参考文献:

正在载入数据...

 

二级参考文献:

正在载入数据...

 

耦合文献:

正在载入数据...

 

引证文献:

正在载入数据...

 

二级引证文献:

正在载入数据...

 

同被引文献:

正在载入数据...

 

相关期刊文献:

正在载入数据...

相关的主题
相关的作者对象
相关的机构对象