检索规则说明:AND代表“并且”;OR代表“或者”;NOT代表“不包含”;(注意必须大写,运算符两边需空一格)
检 索 范 例 :范例一: (K=图书馆学 OR K=情报学) AND A=范并思 范例二:J=计算机应用与软件 AND (U=C++ OR U=Basic) NOT M=Visual
机构地区:[1]西安电子科技大学雷达信号处理国防科技重点实验室,陕西西安710071
出 处:《电子学报》2013年第9期1772-1777,共6页Acta Electronica Sinica
基 金:国家重点基础研究发展计划项目(No.2010CB731903)
摘 要:本文提出了一种基于稀疏约束的ISAR方位自聚焦算法,能够应用于稀疏孔径ISAR成像中.该算法利用ISAR图像的稀疏特征建立最小1范数成像模型,并将相位误差作为模型误差.然后通过数值迭代的方式进行自适应相位误差估计,最终获得聚焦良好的ISAR图像.同时,成像代价函数的建立基于矩阵模型,有利于采用方位FFT和矩阵的Hardmard乘积操作进行快速求解.由于利用稀疏约束,该方法在低信噪比的条件下仍然能够取得良好的聚焦结果.基于仿真数据和实测数据的结果验证了本文算法的有效性.In this paper, a novel autofocusing algorithm of inversed synthetic apemn'e radar (ISAR) imaging based on sparse conslraint is proposed, which can be applied in sparse aperture ISAR imaging. In the scheme, taking the phase errors as model er- rors, the proposed approach exploits the sparsity prior of ISAR image to construct the minimum l-norm image formation. Then nu- merical method is adopted to realize adaptive phase error estimation while well-focused ISAR image can finally be obtained.Mean- while, the objective function of ISAR imaging is established based on matrix model, which can be conveniently solved using fast Fourier transform (FFF) and matrix Hardmard multiplication. Due to the utilization of sparsity restriction, the proposed approach can still be capable of performing well even in the case of low signal-to-noise ratio (SNR). The experimental results using both simulat- ed data and measured data confirm the validation of the proposal.
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在链接到云南高校图书馆文献保障联盟下载...
云南高校图书馆联盟文献共享服务平台 版权所有©
您的IP:216.73.216.15