检索规则说明:AND代表“并且”;OR代表“或者”;NOT代表“不包含”;(注意必须大写,运算符两边需空一格)
检 索 范 例 :范例一: (K=图书馆学 OR K=情报学) AND A=范并思 范例二:J=计算机应用与软件 AND (U=C++ OR U=Basic) NOT M=Visual
机构地区:[1]河海大学计算机与信息学院,江苏南京210098
出 处:《计算机工程与设计》2013年第11期4046-4050,共5页Computer Engineering and Design
基 金:国家自然科学基金项目(51079040);水利部公益性行业科研专项基金项目(200901060)
摘 要:为了快速、准确找出给定时间段相似的水文过程,提出了一种语义相似性匹配下加权动态时间弯曲距离和标准欧式距离结合的查询优化算法。针对水文数据特点,在小波变换、特征点分段和语义符号化过程的前提下,用语义相似匹配和离散区间初步筛选候选集,使用加权动态时间弯曲距离对候选子序列进行近似匹配,利用改进欧式距离通过左右搜索法进一步优化相似结果。以鄱阳湖康山站日水位数据为例,表明了该算法在降低时间复杂度的前提下较准确地找出相似子序列。To quickly and accurately search hydrological processes similar to a given time period, a query optimization algorithm is put forward. It combines weighted dynamic time warping and standard Euclidean distance on the premise of semantic similarity matching. According to the characteristics of hydrological data, first of all, on the premise of the wavelet transform, feature point segmentation and semantic symbol process, semantic similarity matching and discrete interval are used to filter candidate sets of time series, then similar sets of sequences are gotten from the sub-sequence of the candidate sets by weighted K-DTW approximate matching, and finally improved Euclidean distance is utilized via around search method to further optimize the result sets. Experiments on the water level of Poyang Lake Kangshan station show that the proposed algorithm is more accurate to find similar sub sequences under the premise of reducing the time complexity.
关 键 词:时间序列 K-DTW距离 欧式距离 语义相似 小波变换
分 类 号:TP391[自动化与计算机技术—计算机应用技术]
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在链接到云南高校图书馆文献保障联盟下载...
云南高校图书馆联盟文献共享服务平台 版权所有©
您的IP:216.73.216.62