检索规则说明:AND代表“并且”;OR代表“或者”;NOT代表“不包含”;(注意必须大写,运算符两边需空一格)
检 索 范 例 :范例一: (K=图书馆学 OR K=情报学) AND A=范并思 范例二:J=计算机应用与软件 AND (U=C++ OR U=Basic) NOT M=Visual
机构地区:[1]河海大学水利水电学院,江苏南京210098 [2]浙江水利水电学院水利系,浙江杭州310018 [3]浙江省钱塘江管理局勘测设计院,浙江杭州310016
出 处:《水利水运工程学报》2013年第5期66-70,共5页Hydro-Science and Engineering
基 金:水利部公益性行业科研专项经费资助项目(201301061);江苏省杰出青年基金资助项目(BK2012036)
摘 要:海堤工程沉降预测对工程维护和灾害防治具有重要意义,但因影响沉降的因素较多,目前尚无一种普适的分析模型.以海堤工程的沉降数据为研究对象,充分利用ARIMA模型较高的拟合能力和RTA的等维递补预测思想提高海堤工程监测数据的预测长度,建立了ARIMA-RTA组合预测模型,并以浙江某海堤工程为例进行了实例计算,对沉降实测值和模型预测值进行比较.结果表明,ARIMA-RTA组合模型能够充分挖掘监测数据的动态信息,具有物理机制明确,预测精度高的优点,为海堤工程监测资料分析提供了新的研究思路.Analysis and prediction of seawall foundation settlement are very important for engineering maintenance and disaster prevention, but there is no unified analytical model because of too many factors influencing the settlement. Based on the seawall monitoring data, the paper makes full use of the good fitness of Autoregressive Integrated Moving Average Model (ARIMA) and dimension-fixed and cursion-compensated idea of Realtime Tracing Algorithm (RTA), and a new model named ARIMA-RTA is developed. As a test, the prediction model is applied to calculating a case of the seawall monitoring data, and the results show that the model has carefully- defined physical conception and thus opens up broad prospects for application to engineering data analysis for high precision and noise immunity.
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在链接到云南高校图书馆文献保障联盟下载...
云南高校图书馆联盟文献共享服务平台 版权所有©
您的IP:216.73.216.30