检索规则说明:AND代表“并且”;OR代表“或者”;NOT代表“不包含”;(注意必须大写,运算符两边需空一格)
检 索 范 例 :范例一: (K=图书馆学 OR K=情报学) AND A=范并思 范例二:J=计算机应用与软件 AND (U=C++ OR U=Basic) NOT M=Visual
机构地区:[1]郑州升达经贸管理学院,河南郑州451191 [2]河南广播电视大学,河南郑州450008
出 处:《微电子学与计算机》2013年第11期31-34,共4页Microelectronics & Computer
摘 要:针对无线传感器网络的能耗问题,基于概率神经网络和鱼群算法提出了一种刻画有效转发能效比的方法(Energy Efficiency based on Probability neural network and Fish swarm,EEPF).该方法首先利用概率神经网络来实现转发节点的聚类,并且通过鱼群的四种行为来刻画有效转发距离和转发能耗,以此计算网络的有效转发能效比.仿真实验结果表明,相比于其他算法,EEPF算法具有较好的适应性.In order to mitigate the energy consumption of wireless sensor network ,a novel measurement method for energy efficiency ratio EEPF (Energy Efficiency based on Probability neural network and Fish swarm ) is proposed by probability neural network and fish swarm algorithm .In this method ,the node is classified by probability neural network ,and the efficiency forwarding distance and energy consumption are dipected by four behavior of fish swarm .So ,energy efficiency ratio is calculated in network .The result shows that ,compared other algorithm , EEPF algorithm has better adaptability .
分 类 号:TP393[自动化与计算机技术—计算机应用技术]
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在链接到云南高校图书馆文献保障联盟下载...
云南高校图书馆联盟文献共享服务平台 版权所有©
您的IP:216.73.216.80