基于群体行为的自适应变异算子鱼群算法  被引量:3

The Self-Adaptive Mutation Artificial Fish-School Algorithm Based on Group Behaviors

在线阅读下载全文

作  者:陶杨[1] 韩维[1] 张磊[1] 

机构地区:[1]海军航空工程学院,山东烟台264001

出  处:《中国电子科学研究院学报》2013年第5期491-495,共5页Journal of China Academy of Electronics and Information Technology

基  金:国家自然科学基金资助(61032001)

摘  要:针对人工鱼群算法的不足,考虑了包括鱼群个体之间的相互感知作用、群体的领导模式并结合萤火虫群中个体的光强吸引度在内的群体行为特点来对鱼群行为进行完善。同时,在算法改进方面,采用了自适应步长和视野,并且引入了Gauss变异算子和遗传算法在一定情况下对鱼群个体进行变异操作。在此基础上,提出了一种新型自适应变异算子的鱼群算法。通过典型函数验证结果表明该算法在收敛速度、精度、稳定性及克服早熟能力方面都有了显著的提高。According to the disadvantages of the Artificial Fish-school Algorithm, the fish-school behav- iors are consummated by considering the group behaviors of neighborhood sensing factors, leader mode and the attraction of the individuals in the glowworm swarm. Meanwhile, it makes an improvement in combining the self-adaptive step and visual, Gaussian mutation and Genetic Algorithm together. Based on these improvements mentioned before, a new Artificial Fish-school Algorithm based on self-adaptive mu- tation operation is raised. By using typical functions to examine, the simulation results show that the con- vergence speed, optimization precision, algorithm stability and the ability to avoid precocious phenome- non of the improved algorithm are much better than the standard one.

关 键 词:鱼群算法 自适应 感知作用 领导模式 变异操作 

分 类 号:TP312[自动化与计算机技术—计算机软件与理论]

 

参考文献:

正在载入数据...

 

二级参考文献:

正在载入数据...

 

耦合文献:

正在载入数据...

 

引证文献:

正在载入数据...

 

二级引证文献:

正在载入数据...

 

同被引文献:

正在载入数据...

 

相关期刊文献:

正在载入数据...

相关的主题
相关的作者对象
相关的机构对象