红细胞指数鉴别轻型β地中海贫血和缺铁性贫血的作用评价  

Reliability evaluation of red blood cell indices in discriminating between β-thalassemia trait and iron deficiency anemia

在线阅读下载全文

作  者:黄江[1] 陈剑锋[2] 梁婉怡[2] 陈一菁 龙桂芳[3] 

机构地区:[1]广西大学机械工程学院,广西南宁530004 [2]南方医科大学珠江医院儿科中心,广东广州510282 [3]广西医科大学血红蛋白研究室,广西南宁530021

出  处:《生物医学工程与临床》2013年第6期570-573,共4页Biomedical Engineering and Clinical Medicine

基  金:广东省自然科学基金资助项目(S2011040003573)

摘  要:目的评估红细胞指数对鉴别婚育年龄轻型β地中海贫血和缺铁性贫血患者的作用,并利用这些指数建立基于反向传播(BP)人工神经网络的诊断模型以提高预测准确率。方法选择310例轻型β地中海贫血患者,其中男性131例.女性179例.年龄23~37岁,中位年龄25岁:125例缺铁性贫血患者作为对照,其中男性52例,女性73例,年龄20~34岁,中位年龄24岁。采用7种公式计算红细胞指数,分析它们对轻型β地中海贫血的预测灵敏度、特异度和约登指数,以此7种公式的计算值作为参数在MATLAB7.0程序上实现BP人工神经网络诊断模型.结果轻型β地贫血红细胞和血红蛋白(Hb)水平比缺铁性贫血高,平均红细胞体积(MCV)、平均红细胞血红蛋白(MCH)比后者低。7种指数中.Green and King指数(GKI)对轻型β地中海贫血的预测灵敏度(90.6%)及约登指数(78.6%)最高。BP人工神经网络诊断模型刈轻型β地中海贫血的诊断准确率为96.77%。结论GKI用于鉴别轻型β地中海贫血和缺铁性贫血可靠性相对较高。Objective To evaluate the reliability of red blood cells(RBC) indices in discriminating between [3- thalassemia trait(13- TT) and iron deficiency anemia(IDA) for patients of fecundity age, and develop the back propagation(BP) artificial neural network- based diagnostic model using the indices for improving predictive accuracy. Methods A total of 310 patients with β-TT were enrolled, included 131 males and 179 females, which were aged 23 - 37 years old with a median age of 25. The 125 patients with IDA were set as control, included 52 males and 73 females, aged 20 - 34 years old with a median age 24. The RBC indices were calculated by 7 kinds of formulas. The sensitivity, specificity and Youden's index of RBC indices for predicting β-TT were also evaluated. The values of RBC indices were introduced to set up BP artifical neural network model with MATLAB 7.0 software. Results Compared RBC parameters between β-TT and IDA, the higher RBC and hemoglobin(Hb) levels were found in the former while higher mean corpuscular volume(MCV) and higher mean corpuscular hemoglobin(MCH) in the latter. Among 7 RBC indices, Green and King index (GKI) showed the highest sensitivity(90.6 %) and Youden's index was 78.6 %. The predicting accuracy of β-TT was 96.77 % with BP artificial neural network diagnostic model. Conclusion It is demonstrated that GKI appears reliable to discriminate between β-TT and IDA. The BP artificial neural network-based diagnostic model improves the predicting accuracy of β-TT.

关 键 词:红细胞 Β地中海贫血 缺铁性贫血 反向传播(BP)人工神经网络 

分 类 号:R556[医药卫生—血液循环系统疾病] TP391.5[医药卫生—内科学]

 

参考文献:

正在载入数据...

 

二级参考文献:

正在载入数据...

 

耦合文献:

正在载入数据...

 

引证文献:

正在载入数据...

 

二级引证文献:

正在载入数据...

 

同被引文献:

正在载入数据...

 

相关期刊文献:

正在载入数据...

相关的主题
相关的作者对象
相关的机构对象